Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Communication
ChemComm
Notes and references
1 G. F. Zheng, X. P. A. Gao and C. M. Lieber, Nano Lett., 2010, 10,
3179–3183.
2 S. Y. Xu, X. L. Bai, J. W. Ma, M. M. Xu, G. F. Hu, T. D. James and
L. Y. Wang, Anal. Chem., 2016, 88, 7853–7857.
3 K. Lee, S. Mandal, J. Morry, O. Srivannavit, E. Gulari and J. Kim,
Chem. Commun., 2013, 49, 4528–4530.
4 U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke and
T. Nann, Nat. Methods, 2008, 5, 763–775.
5 I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nat.
Mater., 2005, 4, 435–446.
6 A. Xia, Y. Gao, J. Zhou, C. Y. Li, T. S. Yang, D. M. Wu, L. M. Wu and
F. Y. Li, Biomaterials, 2011, 32, 7200–7208.
7 J. K. Wang, N. He, Y. L. Zhu, Z. B. An, P. Chen, C. A. Grimes, Z. Nie
and Q. Y. Cai, Chem. Commun., 2018, 54, 591–594.
8 S. J. Liu, L. L. Zhang, T. S. Yang, H. R. Yang, K. Y. Zhang, X. Zhao,
W. Lv, Q. Yu, X. L. Zhang, Q. Zhao, X. M. Liu and W. Huang, ACS
Appl. Mater. Interfaces, 2014, 6, 11013–11017.
9 X. Xie, N. Gao, R. Deng, Q. Sun, Q. H. Xu and X. Liu, J. Am. Chem.
Soc., 2013, 135, 12608–12611.
10 J. Wen, Y. Q. Xu, H. J. Li, A. P. Lu and S. G. Sun, Chem. Commun.,
2015, 51, 11346–11358.
11 E. J. Goh, K. S. Kim, Y. R. Kim, H. S. Jung, S. Beack, W. H. Kong,
G. Scarcelli, S. H. Yun and S. K. Hahn, Biomacromolecules, 2012, 13,
2554–2561.
12 Q. H. Liang, W. J. Ma, Y. Shi, Z. Li and X. M. Yang, Carbon, 2013, 60,
421–428.
Fig. 3 TEM image of the C-dots (a), C-dot nanoclusters (b), carbon nano-
clusters and antibody composite (c). Fluorescence intensity value of the C-dot–
antibody complex and the untreated antibody to detect the antigen (d).
13 X. Han, Y. Z. Han, H. Huang, H. C. Zhang, X. Zhang, R. H. Liu, Y. Liu
and Z. H. Kang, Dalton Trans., 2013, 42, 10380–10383.
14 C. Xie, B. Nie, L. H. Zeng, F. X. Liang, M. Z. Wang, L. B. Luo,
M. Feng, Y. Q. Yu, C. Y. Wu, Y. C. Wu and S. H. Yu, ACS Nano, 2014,
8, 4015–4022.
15 H. T. Li, Z. H. Kang, Y. Liu and S. T. Lee, J. Mater. Chem., 2012, 22,
24230–24253.
16 Q. Li, T. Y. Ohulchanskyy, R. L. Liu, K. Koynov, D. Q. Wu, A. Best,
R. Kumar, A. Bonoiu and P. N. Prasad, J. Phys. Chem. C, 2010, 114,
12062–12068.
17 X. H. Zhu, T. B. Zhao, Z. Nie, Y. Liu and S. Z. Yao, Anal. Chem., 2015,
87, 8524–8530.
18 M. A. Cohen and M. P. Vandenbergh, Energy Economics, 2012, 34,
S53–S63.
19 M. Zhou, E. Nakatani, L. S. Gronenberg, T. Tokimoto, M. J. Wirth,
V. J. Hruby, A. Roberts, R. M. Lynch and I. Ghosh, Bioconjugate
Chem., 2007, 18, 323–332.
20 L. Zhu, G. H. Xu, Q. Song, T. Tang, X. Wang, F. D. Wei and Q. Hu,
Sens. Actuators, B, 2016, 231, 506–512.
21 Y. Ooyama, S. Yoshikawa, S. Watanabe and K. Yoshida, Org. Biomol.
Chem., 2006, 4, 3406–3409.
22 C. L. Chiang, M. T. Wu, D. C. Dai, Y. S. Wen, J. K. Wang and
C. T. Chen, Adv. Funct. Mater., 2005, 15, 231–238.
23 B. Kong, J. Tang, Y. Y. Zhang, T. Jiang, X. G. Gong, C. X. Peng, J. Wei,
J. P. Yang, Y. C. Wang, X. B. Wang, G. F. Zheng, C. Selomulya and
D. Y. Zhao, Nat. Chem., 2016, 8, 171–178.
24 H. Han, J. C. Pyun, H. Yoo, H. S. Seo, B. H. Jung, Y. S. Yoo, K. Woo
and M. J. Kang, Anal. Chem., 2014, 86, 10157–10163.
25 V. B. Kumar, A. K. Sahu, A. M. Mohsin, X. P. Li and A. Gedanken,
ACS Appl. Mater. Interfaces, 2017, 9, 28930–28938.
26 H. Z. Liu, F. Wang, Y. P. Wang, J. J. Mei and D. X. Zhao, ACS Appl.
Mater. Interfaces, 2017, 9, 18248–18253.
27 T. H. Chen and W. L. Tseng, Anal. Chem., 2017, 89, 11348–11356.
28 D. Li, Z. W. Zhou, J. Qin, Y. Li, Z. R. Liu and W. L. Wu, Chemis-
trySelect, 2018, 3, 2479–2486.
29 A. Mazloomi Moqaddam, D. Derome and J. Carmeliet, Langmuir,
2018, 34, 5635–5645.
the C-dot nanoclusters, and the optimized adsorption capacity of the
antibody is 2.5 mg mLÀ1 (Fig. S10, ESI†). Further, we performed a
direct fluorescent immunoassay to demonstrate the utility of the
fluorescent probe, where the experiment group fluorescence intensity
was noticeably raised about 44 025 as shown in Fig. 3d (green
column), which is about 10 times that of the blank control group.
By contrast, when only C-dots were examined, no significant fluores-
cence signal was observed (Fig. 3d, blue column), indicating the good
specificity and selectivity of the proposed fluorescent immunoassay.
Thus, these comparison results indicate adequately that the prepared
probes via C-dots labelled anti-nano-drug deliver antibody could be
used to sensitively detect nano-drug deliver through the amplification
of signals. At the same time, the ultraviolet absorption spectrum also
provides a good proof (Fig. S11, ESI†).
In summary, combined with evaporation-induced self-assembly
techniques, green non-toxic C-dots and glutaraldehyde coupling agents,
we first studied the morphology of C-dot nanostructures by solvent
evaporation on carbon films. Then, the C-dot nanoclusters further
formed complexes with the protein at room temperature. We further
verified the fluorescence intensity of the C-dot antibody complex by a
fluorescence immunoassay, which is about 10 times that of the blank
control group. As can be observed from these preliminary results,
glutaraldehyde-mediated carbon nanoclusters are not only intermedi-
ates for the formation of multi-modal nanomaterials, but more impor-
tantly, they can also form complexes with proteins. This will have a very
beneficial impact on the field of biomarkers.
The authors gratefully acknowledge the financial support
from the National Natural Science Foundation of China (No.
21175004).
30 Z. C. Feng, Microelectron. Eng., 2006, 83, 165–169.
31 R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and
T. A. Witten, Nature, 1997, 389, 827–829.
32 I. Migneault, C. Dartiguenave, M. J. Bertrand and K. C. Waldron,
Biotechniques, 2004, 37, 790–796.
33 C. Xu, X. Guan, L. Lin, Q. Wang, B. Gao, S. Zhang, Y. Li and H. Tian,
ACS Biomater. Sci. Eng., 2017, 4, 193–199.
Conflicts of interest
34 J. Kwon, M. Lee and S. Na, J. Comput. Chem., 2016, 37, 1839–1846.
There are no conflicts to declare.
13126 | Chem. Commun., 2018, 54, 13123--13126
This journal is ©The Royal Society of Chemistry 2018