Inorganic Chemistry
Article
*
(13) Wang, X.; Tian, W.; Zhai, T. Y.; Zhi, C. Y.; Bando, Y.; Golberg,
D. Cobalt (II,III) Oxide Hollow Structures: Fabrication, Properties
and Applications. J. Mater. Chem. 2012, 22, 23310−23326.
*
ORCID
(
14) Wang, G. H.; Hilgert, J.; Richter, F. H.; Wang, F.; Bongard, H.
Notes
J.; Spliethoff, B.; Weidenthaler, C.; Schu
Bimetallic Nanoparticles in Hollow Carbon Nanospheres for
̈
th, F. Platinum-Cobalt
Hydrogenolysis of 5-Hydroxymethylfurfural. Nat. Mater. 2014, 13,
2
(
93−300.
The authors declare no competing financial interest.
15) Ying, J.; Jiang, G.; Paul Cano, Z.; Han, L.; Yang, X. Y.; Chen, Z.
Nitrogen-Doped Hollow Porous Carbon Polyhedrons Embedded
with Highly Dispersed Pt Nanoparticles as A Highly Efficient and
Stable Hydrogen Evolution Electrocatalyst. Nano Energy 2017, 40,
88−94.
ACKNOWLEDGMENTS
This work was supported by National Key Scientific Instru-
ment, Equipment Development Project of China (Grant
1627809), and National Natural Science Foundation of
■
2
(16) Kuang, X.; Luo, Y. C.; Kuang, R.; Wang, Z. L.; Sun, X.; Zhang,
China (Grants 21605058, 21575050, and 21375047).
Y.; Wei, Q. Metal Organic Framework Nanofibers Derived Co O -
3 4
Doped Carbon-Nitrogen Nanosheet Arrays for High Efficiency
REFERENCES
Electrocatalytic Oxygen Evolution. Carbon 2018, 137, 433−441.
■
(
17) Kaneti, Y. V.; Tang, J.; Salunkhe, R. R.; Jiang, X.; Yu, A.; Wu, K.
(
1) Ma, M.; Ge, R.; Ji, X.; Ren, X.; Liu, Z.; Asiri, A. M.; Sun, X.
C.-W.; Yamauchi, Y. Nano-Architectured Design of Porous Materials
and Nanocomposites from Metal-Organic Frameworks. Adv. Mater.
Benzoate Anions-Intercalated Layered Nickel Hydroxide Nanobelts
Array: An Earth-Abundant Electrocatalyst with Dreatly Enhanced
Oxygen Evolution Activity. ACS Sustainable Chem. Eng. 2017, 5,
625−9629.
2) Reier, T.; Pawolek, Z.; Cherevko, S.; Bruns, M.; Jones, T.;
Teschner, D.; Selve, S.; Bergmann, A.; Nong, H. N.; Schlogl, R.;
Mayrhofer, K. J.; Strasser, P. Molecular Insight in Structure and
Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for
Electrochemical Water Splitting (OER). J. Am. Chem. Soc. 2015,
2
(
017, 29, 1604898−1604937.
18) Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.;
9
(
Ameloot, R. An Updated Roadmap for The Integration of Metal-
Organic Frameworks with Electronic Devices and Chemical Sensors.
Chem. Soc. Rev. 2017, 46, 3185−3241.
̈
(19) Guan, B. Y.; Yu, X. Y.; Wu, H. B.; Lou, X. W. D. Complex
Nanostructures from Materials Based on Metal-Organic Frameworks
for Electrochemical Energy Storage and Conversion. Adv. Mater.
1
(
37, 13031−13040.
3) Li, H.; Chen, S.; Zhang, Y.; Zhang, Q.; Jia, X.; Zhang, Q.; Gu, L.;
2
(
017, 29, 1703614−1703623.
20) Zhu, C.; Fu, Y.; Liu, C.; Liu, Y.; Hu, L.; Liu, J.; Bello, I.; Li, H.;
Sun, X.; Song, L.; Wang, X. Systematic Design of Superaerophobic
Nanotube-Array Electrode Comprised of Transition-Metal Sulfides
for Overall Water Splitting. Nat. Commun. 2018, 9, 2452−2463.
Liu, N.; Guo, S.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Kang, Z. Carbon
Dots as Fillers Inducing Healing/Self-Healing and Anticorrosion
Properties in Polymers. Adv. Mater. 2017, 29, 1701399−1701405.
(
4) Anantharaj, S.; Reddy, P. N.; Kundu, S. Core-Oxidized
(21) Wei, G.; He, J.; Zhang, W.; Zhao, X.; Qiu, S.; An, C. Rational
Amorphous Cobalt Phosphide Nanostructures: An Advanced and
Highly Efficient Oxygen Evolution Catalyst. Inorg. Chem. 2017, 56,
Design of Co(II) Dominant and Oxygen Vacancy Defective
CuCo O @CQDs Hollow Spheres for Enhanced Overall Water
1
(
742−1756.
2
4
Splitting and Supercapacitor Performance. Inorg. Chem. 2018, 57,
380−7389.
22) Wang, H.; Getzschmann, J.; Senkovska, I.; Kaskel, S. Structural
Transformation and High Pressure Methane Adsorption of Co (1,4-
5) Men, Y.; Liu, X.; Yang, F.; Ke, F.; Cheng, G.; Luo, W. Carbon
7
(
Encapsulated Hollow Co3O4 Composites Derived from Reduced
Graphene Oxide Wrapped Metal-Organic Frameworks with Enhanced
Lithium Storage and Water Oxidation Properties. Inorg. Chem. 2018,
7, 10649−10655.
6) Zhu, Y. P.; Ma, T. Y.; Jaroniec, M.; Qiao, S. Z. Self-Templating
Synthesis of Hollow Co Microtube Arrays for Highly Efficient Water
Electrolysis. Angew. Chem., Int. Ed. 2017, 56, 1324−1328.
7) Yuan, C.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed Transition-Metal
2
bdc) dabco. Microporous Mesoporous Mater. 2008, 116, 653−657.
5
(
2
(
23) Gu, Z. G.; Li, D. J.; Zheng, C.; Kang, Y.; Woll, C.; Zhang, J.
̈
MOF-Templated Synthesis of Ultrasmall Photoluminescent Carbon-
Nanodot Arrays for Optical Applications. Angew. Chem., Int. Ed. 2017,
5
(
6, 6853−6858.
(
24) Yang, Z. C.; Wang, M.; Yong, A. M.; Wong, S. Y.; Zhang, X. H.;
Oxides: Design, Synthesis, and Energy-Related Applications. Angew.
Chem., Int. Ed. 2014, 53, 1488−1504.
8) Qin, Y.; Zhang, F.; Chen, Y.; Zhou, Y.; Li, J.; Zhu, A.; Luo, Y.;
Tan, H.; Chang, A. Y.; Li, X.; Wang, J. Intrinsically Fluorescent
Carbon Dots with Tunable Emission Derived from Hydrothermal
Treatment of Glucose in The Presence of Monopotassium Phosphate.
Chem. Commun. 2011, 47, 11615−11617.
(
Tian, Y.; Yang, J. Hierarchically Porous Cu Hollow Spheres
Fabricated via A One-Pot Template-Free Method for High-Perform-
ance Gas Sensors. J. Phys. Chem. C 2012, 116, 11994−12000.
(25) Hou, J.; Yan, J.; Zhao, Q.; Li, Y.; Ding, H.; Ding, L. A Novel
One-Pot Route for Large-Scale Preparation of Highly Photo-
luminescent Carbon Quantum Dots Powders. Nanoscale 2013, 5,
9558−9561.
(
9) Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; Ramadass, K.;
Singh, G.; Scaranto, J.; Ravon, U.; Al-Bahily, K.; Vinu, A. Recent
Advances in Functionalized Micro and Mesoporous Carbon
Materials: Synthesis and Applications. Chem. Soc. Rev. 2018, 47,
(26) Suryanto, B. H. R.; Lu, X. Y.; Zhao, C. Layer-by-Layer
2
(
680−2721.
Assembly of Transparent Amorphous Co O Nanoparticles/Gra-
3 4
10) Hu, X.; Wang, C.; Li, J.; Luo, R.; Liu, C.; Sun, X.; Shen, J.; Han,
phene Composite Electrodes for Sustained Oxygen Evolution
Reaction. J. Mater. Chem. A 2013, 1, 12726−12731.
(27) Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.;
W.; Wang, L. Metal-Organic Framework-Derived Hollow Carbon
Nanocubes for Fast Solid-Phase Microextraction of Polycyclic
Aromatic Hydrocarbons. ACS Appl. Mater. Interfaces 2018, 10,
Surendranath, Y.; Dinca,
̆
M. Electrochemical Oxygen Reduction
1
(
5051−15057.
Catalysed by Ni
3
(Hexaiminotriphenylene) . Nat. Commun. 2016, 7,
2
11) Tao, H.; Yan, C.; Robertson, A. W.; Gao, Y.; Ding, J.; Zhang,
10942−10948.
Y.; Ma, T.; Sun, Z. N-Doping of Graphene Oxide at Low
Temperature for The Oxygen Reduction Reaction. Chem. Commun.
017, 53, 873−876.
12) Clancy, A. J.; Bayazit, M. K.; Hodge, S. A.; Skipper, N. T.;
Howard, C. A.; Shaffer, M. S. P. Charged Carbon Nanomaterials:
Redox Chemistries Fullerenes, Carbon Nanotubes, and Graphenes.
Chem. Rev. 2018, 118, 7363−7408.
(28) Li, F.; Li, Y.; Yang, X.; Han, X.; Jiao, Y.; Wei, T.; Yang, D.; Xu,
H.; Nie, G. Highly Fluorescent Chiral N-S-Doped Carbon Dots from
Cysteine Affect Cellular Energy Metabolism. Angew. Chem., Int. Ed.
2018, 57, 2377−2382.
2
(
(29) Xu, C.; Wang, X.; Zhu, J.; Yang, X.; Lu, L. Deposition of Co O
Nanoparticles onto Exfoliated Graphite Oxide Sheets. J. Mater. Chem.
2008, 18, 5625−5629.
3
4
F
Inorg. Chem. XXXX, XXX, XXX−XXX