A6
Journal of The Electrochemical Society, 156 ͑1͒ A1-A6 ͑2009͒
show saturation at high surface areas, opening avenues for further
1
2
0
8
6
4
2
0
capacitance enhancement. XPS studies revealed up to ϳ7 atom % of
nitrogen in samples synthesized using an acetonitrile precursor. In
contrast to expectations, nitrogen doping was not found to increase
the total capacitance values but negatively affected the capacitance
retention at high current densities. This suggests that pure carbon
electrodes might be better for EDLCs using organic electrolytes.
The frequency response of the synthesized materials was better than
that of the high-capacitance microporous carbons. The combination
of high capacitance with a short time constant makes zeolite-
templated carbon a promising material for high-energy, high-power
EDLCs using organic electrolytes.
1
τ0 E series
τ
Y series
0
6
50
700
750
800
850
900
Synthesis temperature (°C)
Georgia Institute of Technology assisted in meeting the publication costs
of this article.
Figure 8. ͑Color online͒ Variation of the time constant with synthesis tem-
perature.
References
1
. B. E. Conway, Electrochemical Supercapacitors, p. 698, Kluwer Academic/Plenum
Publishers, New York ͑1999͒.
the Y sample series, sample Y 900 showed the best frequency re-
sponse ͑shortest response time which allows reaching half of the
maximum capacitance CLF/2͒, possibly due to higher conductivity
2
3
. J. R. Miller and P. Simon, Science, 321, 651 ͑2008͒.
. G. Sikha, R. E. White, and B. N. Popov, J. Electrochem. Soc., 153, L9 ͑2006͒.
4. L. T. Lam and R. Louey, J. Power Sources, 158, 1140 ͑2006͒.
5
. H. A. Catherino, J. F. Burgel, P. L. Shi, A. Rusek, and X. L. Zou, J. Power Sources,
͑
Fig. 6B͒, fewer structural defects, and functional groups ͑Table I͒
1
62, 965 ͑2006͒.
resulting from the higher synthesis temperature. Within the E series,
E 650 demonstrated the fastest response ͑Fig. 7A͒, possibly result-
ing from its lower ESR ͑Fig. 6B͒ and low impurity content ͑Table I͒.
A more pronounced difference is observed when considering the
dissipative part of the capacitance ͑Fig. 7C and D͒. The maximum of
each curve corresponds to the frequency of the transition from the
capacitive ͑low frequency͒ to the purely resistive ͑high frequency͒
behavior of the cell. Y 900 clearly has the highest transition fre-
quency.
6
7
. H. Yoo, S. K. Sul, Y. Park, and J. Jeong, IEEE Trans. Ind. Appl., 44, 108 ͑2008͒.
. L. P. Jarvis, T. B. Atwater, and P. J. Cygan, J. Power Sources, 79, 60 ͑1999͒.
8. A. G. Pandolfo and A. F. Hollenkamp, J. Power Sources, 157, 11 ͑2006͒.
9. Y. Gogotsi, A. Nikitin, H. Ye, W. Zhou, J. E. Fischer, B. Yi, H. C. Foley, and M. W.
Barsoum, Nature Mater., 2, 591 ͑2003͒.
1
0. G. Yushin, A. Nikitin, and Y. Gogotsi, in Nanomaterials Handbook, Y. Gogotsi,
Editor, pp. 239–282, CRC Press, Boca Raton, FL ͑2006͒.
1
1. G. Yushin, R. K. Dash, Y. Gogotsi, J. Jagiello, and J. E. Fischer, Adv. Funct. Mater.,
16, 2288 ͑2006͒.
12. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, and P. Simon, Science, 313, 1760
͑2006͒.
The reciprocal of the characteristic ͑transition͒ frequency is a
1
1
3. L. Permann, M. Latt, J. Leis, and M. Arulepp, Electrochim. Acta, 51, 1274 ͑2006͒.
4. M. Arulepp, J. Leis, M. Latt, F. Miller, K. Rumma, E. Lust, and A. F. Burke, J.
Power Sources, 162, 1460 ͑2006͒.
time constant ͑Fig. 8͒, which varies with the synthesis tempera-
0
ture for both the E and Y sample series. This time constant, derived
from the CЈ͑f͒ and CЉ͑f͒ plots ͑Fig. 7͒, characterizes how fast the
device can be efficiently charged and discharged. This time depends
on both the real resistance and capacitance of the device. The resis-
tance, in turn, has two contributions: the frequency-dependent part
related to the ion diffusion within the porous carbon electrodes and
the frequency-independent ESR. The slight increase in 0 for the
Y 850 sample as compared to the Y 800 sample in spite of its higher
synthesis temperature and lower ESR could be related to both the
presence of the functional groups and the higher capacitance of
Y 850. E 750 also does not follow the trend of decreasing the time
15. J. S. Huang, B. G. Sumpter, and V. Meunier, Angew. Chem., Int. Ed., 47, 520
2008͒.
6. R. Ryoo, S. H. Joo, and S. Jun, J. Phys. Chem. B, 103, 7743 ͑1999͒.
7. T. Kyotani, L. F. Tsai, and A. Tomita, Chem. Mater., 8, 2109 ͑1996͒.
8. T. Kyotani, Carbon, 38, 269 ͑2000͒.
19. J. Lee, J. Kim, and T. Hyeon, Adv. Mater. (Weinheim, Ger.), 18, 2073 ͑2006͒.
20. Y. D. Xia and R. Mokaya, Adv. Mater. (Weinheim, Ger.), 16, 886 ͑2004͒.
1. Y. D. Xia and R. Mokaya, Adv. Mater. (Weinheim, Ger.), 16, 1553 ͑2004͒.
2. T. Kyotani, T. Nagai, S. Inoue, and A. Tomita, Chem. Mater., 9, 609 ͑1997͒.
3. J. I. Paredes, A. Martinez-Alonso, T. Yamazaki, K. Matsuoka, J. M. D. Tascon, and
T. Kyotani, Langmuir, 21, 8817 ͑2005͒.
͑
1
1
1
2
2
2
24. T. Kyotani, Z. X. Ma, and A. Tomita, Carbon, 41, 1451 ͑2003͒.
2
2
2
5. A. Pacula and R. Mokaya, J. Phys. Chem. C, 112, 2764 ͑2008͒.
6. Z. X. Yang, Y. D. Xia, and R. Mokaya, J. Am. Chem. Soc., 129, 1673 ͑2007͒.
7. Z. X. Yang, Y. D. Xia, X. Z. Sun, and R. Mokaya, J. Phys. Chem. B, 110, 18424
͑2006͒.
constant at higher temperatures, and its high could be related to
0
the unexpectedly high resistance ͑Fig. 6͒. The time constant of
E550, not plotted in Fig. 8, is ϳ30 s. The relatively high values
0
for the Y samples in spite of their higher synthesis temperatures and
lower ESR are related to the higher capacitance of these samples.
28. Z. X. Yang, Y. D. Xia, and R. Mokaya, Adv. Mater. (Weinheim, Ger.), 16, 727
͑2004͒.
9. F. O. M. Gaslain, J. Parmentier, V. P. Valtchev, and J. Patarin, Chem. Commun.
Cambridge), 2006, 991.
0. O. Klepel, H. Strauss, A. Garsuch, and K. Bohme, Mater. Lett., 61, 2037 ͑2007͒.
2
The overall values for the zeolite-templated carbon samples are
0
(
lower than those observed in high-capacitance microporous
3
1
2
carbons but higher than those of carbon nanotubes and carbon
31. A. Garsuch, O. Klepel, R. R. Sattler, C. Berger, R. Glaser, and J. Weitkamp,
4
1
onions that have an open pore structure and limited capacitance.
Carbon, 44, 593 ͑2006͒.
3
2. A. Garsuch and O. Klepel, Carbon, 43, 2330 ͑2005͒.
Conclusion
33. C. O. Ania, V. Khomenko, E. Raymundo-Pinero, J. B. Parra, and F. Beguin, Adv.
Funct. Mater., 17, 1828 ͑2007͒.
We have synthesized porous carbons with well-developed poros-
ity by chemical vapor deposition of carbon onto zeolite templates
using acetonitrile and ethylene precursors. Electron microscopy
studies showed shape conservation during the carbon template syn-
thesis and the formation of a graphitic carbon coating of up to
3
4. P. I. Ravikovitch and A. V. Neimark, Colloids Surf., A, 187–188, 11 ͑2001͒.
35. C. Portet, P. L. Taberna, P. Simon, and E. Flahaut, J. Electrochem. Soc., 153, A649
2006͒.
6. C. Portet, P. L. Taberna, P. Simon, and C. Laberty-Robert, Electrochim. Acta, 49,
05 ͑2004͒.
7. C. Portet, G. Yushin, and Y. Gogotsi, J. Electrochem. Soc., 155, A531 ͑2008͒.
͑
3
3
9
2
0 nm in thickness on the particle surface. CV and charge–discharge
38. O. Barbieri, M. Hahn, A. Herzog, and R. Kotz, Carbon, 43, 1303 ͑2005͒.
39. E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, and F. Beguin, Carbon, 44,
tests showed high-energy-storage characteristics of the produced
materials. The capacitance of the synthesized carbons in the
NEt BF -acetonitile electrolyte reached 146 F/g and was among the
2
498 ͑2006͒.
4
4
4
0. D. Hulicova, M. Kodama, and H. Hatori, Chem. Mater., 18, 2318 ͑2006͒.
1. C. Portet, G. Yushin, and Y. Gogotsi, Carbon, 45, 2511 ͑2007͒.
2. P. L. Taberna, G. Chevallier, P. Simon, D. Plee, and T. Aubert, Mater. Res. Bull.,
41, 478 ͑2006͒.
4
4
highest reported so far. The capacitance values scaled well with the
SSA of the samples and, in contrast to activated carbons, did not