1284
C.G. Son et al. / Journal of Alloys and Compounds 509 (2011) 1279–1284
carbon-coated LiFePO4 by adipic acid using solid-state synthesis
is simple, convenient and very easily reproduced on an industrial
scale.
4. Conclusions
Nanocrystalline LiFePO4 was successfully synthesized by a
solid-state reaction method using various concentrations (0–0.2) of
adipic acid proportional to total metal ions. Powder X-ray diffrac-
tion measurements demonstrated a well-developed LiFePO4 phase
and crystallinity of the synthesized materials. A carbon layer of
approximately 5 nm was coated onto the synthesized particles from
the carbonization of adipic acid at high temperatures, which was
confirmed by TEM. The 0.1 mol adipic acid-treated LiFePO4 exhib-
ited superior performance over other concentrations of carbon
coating. The cell presented an excellent cycle performance until
37 C.
Fig. 9. Electrochemical impedance traces of (a) bare LiFePO4 and (b) 0.1 mol adipic
acid-treated LiFePO4 at ambient temperature.
Acknowledgement
This work was supported by a grant (Code#: 2010K000329)
from the Center for Nanostructured Materials Technology, under
the 21st Century Frontier R&D programs of the Ministry of Educa-
tion, Science and Technology, Korea.
References
[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochem. Soc. 144
(1997) 1188.
[2] M. Thackeray, Nat. Mater. 1 (2002) 81.
[3] A.S. Andersson, J.O. Thomas, J. Power Sources 97–98 (2001) 498.
[4] A.K. Shukla, T.P. Kumar, Curr. Sci. 94 (2008) 314.
[5] Z. Chen, J.R. Dahn, J. Electrochem. Soc. 149 (2002) A1184.
[6] H. Huang, S.C. Yin, L.F. Nazar, Electrochem. Solid State Lett. 4 (2001) A170.
[7] F. Croce, A. D’Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, Electrochem.
Solid State Lett. 5 (2002) A47.
[8] S.B. Lee, S.H. Cho, J.B. Heo, V. Aravindan, H.S. Kim, Y.S. Lee, J. Alloys Compd. 488
(2009) 380.
[9] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang, H.G. Kim, Solid State
Commun. 129 (2004) 311.
[10] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Nat. Mater. 1 (2002) 123.
[11] F.K. Hsu, S.Y. Tsay, B.J. Hwang, J. Mater. Chem. 14 (2004) 2690.
[12] M. Takahashi, H. Ohtsuka, K. Akuto, Y. Sakurai, J. Electrochem. Soc. 152 (2005)
A899.
[13] G.T.K. Fey, T.L. Lu, F.Y. Wu, W.H. Li, J. Solid State Electrochem. 12 (2008) 825.
[14] M.S. Song, H.S. Kwon, J. Power Sources 166 (2007) 260.
[15] A. Manthiram, A.V. Murugan, A. Sarkar, T. Muraliganth, Energy Environ. Sci. 1
(2008) 621.
Fig. 10. Rate capability performance of the Li/LiFePO4 cell at room temperature. The
molar ratio of adipic acid to total metal ions is 0.1 and the current densities are (a)
1 C, (b) 8 C, (c) 11 C, and (d) 37 C.
[16] Z. Li, D. Zhang, F. Yang, J. Mater. Sci. 44 (2009) 2435.
[17] K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, J. Mater.
Chem. 19 (2009) 605.
[18] D. Jugovic, D. Uskokovic, J. Power Sources 190 (2009) 538.
[19] C. Gouri, Lithium Iron Phosphate—A Promising Cathode-Active Material for
Lithium Secondary Batteries, Trans Tech Publishers, 2008.
[20] S.S. Zhang, A.L. Allen, K. Xu, T.R. Jow, J. Power Sources 147 (2005) 234.
[21] S.B. Lee, S.H. Cho, S.J. Cho, G.J. Park, S.H. Park, Y.S. Lee, Electrochem. Commun.
10 (2008) 1219.
[22] H.H. Lim, I.C. Jang, S.B. Lee, K. Karthikeyan, V. Aravindan, Y.S. Lee, J. Alloys
Compd. 495 (2010) 181.
[23] L.N. Wang, X.C. Zhan, Z.G. Zhang, K.L. Zhang, J. Alloys Compd. 456 (2008) 461.
[24] Y.L. Cao, L.H. Yu, T. Li, X.P. Ai, H.X. Yang, J. Power Sources 172 (2007) 913.
[25] G.X. Wang, S. Bewlay, J. Yao, J.H. Ahn, S.X. Dou, H.K. Liu, Electrochem. Solid-State
7 (2004) A503.
[26] K. Shiraishi, K. Dokko, K. Kanamura, J. Power Sources 146 (2005) 555.
[27] A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 4
(2005) 366.
[28] M. Konarova, I. Taniguchi, Mater. Res. Bull. 43 (2008) 3305.
[29] M. Konorova, I. Taniguchi, Powder Technol. 191 (2009) 111.
[30] P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930.
[31] G.X. Wang, L. Yang, Y. Chen, J.Z. Wang, S. Bewlay, H.K. Liu, Electrochim. Acta 50
(2005) 4649.
the LiFePO4 electrode was much larger than those treated with AA.
Consequently, the improved battery performance of the LiFePO4
electrode may be due to the decrease in CT resistance of the elec-
trode.
Capacity retention is an important factor in determining the
to study capacity retention, the 0.1 mol AA carbon-coated LiFePO4
cell was further investigated. The rate capability and capacity
retention of the Li/LiFePO4 cell was analyzed at different current
densities from 1 to 37 C at room temperature and this is illus-
trated in Fig. 10. The cell delivered a discharge capacity of 143 and
73 mAh/g for 1 C and the extremely high 37 C rates, respectively.
This excellent rate capability performance may be ascribed to the
superior phase purity and effective coating of carbon derived from
adipic acid by the solid-state method used. The discharge capacity
values were much higher than the reported values using solid-state
synthesis [20]. Therefore, it was concluded that the synthesis of