C O M M U N I C A T I O N S
Figure 2. TEM images of solid (a) and hollow (b) mesoporous ZrO2
spheres.
Figure 4. TEM image (a) and 31P NMR spectrum (b) of mesoporous
zirconium phosphate spheres.
source, respectively. The 31P NMR spectrum of mesoporous ZrP
spheres in Figure 4b shows two peaks at -20.7 and -25.2 ppm,
corresponding to tetrahedral phosphorus of connectivity 3 and 4
[P(OZr)3OH and P(OZr)4], respectively. This result is in agreement
with the previously reported data of mesoporous ZrP after
calcination.3a
In conclusion, we have adopted a two-step nanocasting route to
prepare monodisperse mesoporous inorganic spheres with pore walls
of variable compositions and controllable crystalline phases. In
addition, hollow mesoporous spheres can be obtained in some cases,
depending on the polarity of the precursor. These novel mesoporous
inorganic spheres are expected to have a variety of applications in
chromatography, catalysis, and nanotechnology.
Figure 3. (a) TEM image and ED pattern (inset) and (b) N2 adsorption/
desorption isotherms of mesoporous γ-Al2O3 spheres.
The polarity of the precursor had a great effect on the final
product morphologies due to the hydrophobic nature of carbon
template. For example, in the preparation of mesoporous ZrO2
spheres, when ZrCl4 was dissolved in a mixture of ethanol and
cyclohexane (1:1, v/v) as the initial precursor, the resulting ZrO2
spheres exhibited a solid structure (Figure 2a) similar to that of
TiO2 spheres, whereas using the ethanol solution of ZrCl4 as
precursor, only hollow mesoporous ZrO2 spheres (Figure 2b) were
obtained. This result indicated that it was difficult to infiltrate the
inner parts of the carbon spheres with the ethanol solution of ZrCl4,
which was somewhat hydrophilic, resulting in hollow ZrO2 spheres
after calcination. On the contrary, the precursor became very
hydrophobic with the addition of cyclohexane and therefore could
fill all the parts of carbon template to lead to solid ZrO2 spheres.
Different from TiO2 and ZrO2 spheres which are both composed
of particulate nanocrystals, mesoporous Al2O3 spheres (Figure 3a)
prepared from aluminum sec-butoxide are composed of interesting
lath-shaped nanoparticles. The XRD pattern exhibits reflections
consistent with γ-Al2O3. A similar phenomenon was also found
by Zhang et al.2b in the preparation of mesoporous MSU-γ Al2O3
by hydrolysis of aluminum salts in the presence of nonionic
surfactant. The N2 adsorption/desorption isotherms in Figure 3b
indicate the mesoporosity of γ-Al2O3 spheres, although their pore
size distribution is broader than that of TiO2 spheres, probably due
to their special nanoparticle morphology. The BET surface area of
γ-Al2O3 spheres is 442 m2/g, much larger than the reported data of
both conventional γ-Al2O3 (185-250 m2/g) and MSU-γ Al2O3
(299-370 m2/g).2b
Acknowledgment. This work is supported by the NSFC
(20273016, 20233030), the SNPC (0249 nm028), and the Major
State Basic Research Development Program (2000077500).
Supporting Information Available: Figure S1, S2, S3, S4, S5,
and S6 (PDF). This material is available free of charge via the Internet
References
(1) (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J.
S. Nature 1992, 359, 710. (b) Inagaki, S.; Guan, S.; Ohsuna, T.; Terasaki,
O. Nature 2002, 416, 304.
(2) (a) Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D.
Nature 1999, 396, 152. (b) Zhang, Z.; Hicks, R. W.; Pauly, T. R.;
Pinnavaia, T. J. J. Am. Chem. Soc. 2002, 124, 1592. (c) Wong, M. S.;
Jeng, E. S.; Ying, J. Y. Nano Lett. 2002, 2, 637.
(3) (a) Jime´nez-Jime´nez, J.; Maireles-Torres, P.; Olivera-Pastor, P.; Rodr´ıguez-
Castello´n, E.; Jime´nez-Lo´pez, A.; Jones, D. J.; Rozie`re, J. AdV. Mater.
1998, 10, 812. (b) Serre, C.; Auroux, A.; Gervasini, A.; Hervieu, M.;
Fe´rey G. Angew. Chem., Int. Ed. 2002, 41, 1594.
(4) (a) Grun, M.; Buchel, C.; Kumar, D.; Schumacher, K.; Bidlingmaier, B.;
Unger, K. K. Stud. Surf. Sci. Catal. 2000, 128, 155. (b) Lu, Y.; Fan, H.;
Stump, A.; Ward, T. L.; Rieker, T.; Brinker, C. J. Nature 1999, 398, 223.
(c) Bibby, A.; Mercier, L. Chem. Mater. 2002, 14, 1591.
(5) Wang, L.; Tomura, S.; Maeda, M.; Ohashi, F.; Inukai, K.; Suzuki, M.
Chem. Lett. 2000, 1414.
(6) Subramanian, A.; Carr, P. W.; McNeff, C. V. J. Chromatogr., A 2000,
890, 15.
(7) Jiang, Z.; Zuo, Y. Anal. Chem. 2001, 73, 686.
(8) Meyer, U.; Larsson, A.; Hentze, H.; Caruso, R. A. AdV. Mater. 2002, 12,
1768.
(9) (a) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743. (b)
Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R.
Nature 2001, 412, 169. (c) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.;
Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000,
122, 10712.
In addition to single-component, this two-step procedure can be
readily extendible to multicomponent mesoporous oxides and metal
phosphates using the homogeneously mixed precursors (Table 1).
The obtained mesoporous spheres of mixed oxides are generally
amorphous, indicating that the two components are distributed
uniformly in the wall.2a Figure 4a shows the TEM image of
mesoporous zirconium phosphate (ZrP) spheres prepared using
triethyl phosphate and ZrCl4 as phosphorus source and zirconium
(10) (a) Kang, M.; Yi, S. H.; Lee, H. I.; Yie, J. E.; Kim, J. M. Chem. Commun.
2002, 1944. (b) Lu, A.; Schmidt, W.; Taguchi, A.; Spliethoff, B.; Tesche,
B.; Schu¨th, F. Angew. Chem., Int. Ed. 2002, 41, 3489.
(11) (a) Schwickardi, M.; Johann, T.; Schmidt, W.; Busch, O.; Schuth, F. Stud.
Surf. Sci. Catal. 2002, 143, 93. (b) Wakayama, H.; Itahara, H.; Tatsuda,
N.; Inagaki, S.; Fukushima, Y. Chem. Mater. 2001, 13, 2392.
(12) Zhang, H.; Banfield, J. F. J. Phys. Chem. B 2000, 104, 3481.
JA029964B
9
J. AM. CHEM. SOC. VOL. 125, NO. 17, 2003 4977