EVOLUTION OF ZIRCONIA NANOPARTICLES
505
particles. BET analysis of nitrogen adsorption measure-
ments indicate that the high surface area of the as prepared
pure ZrO2 powders (135.4 m2/g) is mainly due to internal
surfaces of micropores within the aggregate of very small
particles. As annealing temperature increases up to about
500ꢂC, microporosity evolves to mesoporosity as particles
grow in size and in size distribution. Above 500ꢂC a more
abrupt change of the microstructure occurs which leads to
a crossover from a mass-fractal-like aggregate to a random
packing of solid particles featuring reduced surface area
2. Fornasiero, P., Di Monte, R., Rao, G. R., Kaspar, J., Meriani, S.,
Trovarelli, A., and Graziani, M., J. Catal. 151, 168 (1995).
3. Lo¨of, P., Kasemo, B., and Keck, K.-E., J. Catal. 118, 339 (1989).
4. Ozawa, M., Kimura, M., and Isogai., A., J. Alloys Compounds 193, 73
(1993).
5. Yao, H. C., and Yao, Y. F. Y., J. Catal. 86, 254 (1984).
6. Ozawa, M., and Kimura, M., J. Less-Common Metals 171, 195 (1991).
7. Meriani, S., and Spinolo, G., Powder Diffr. 2, 255 (1987).
8. Thiyagarajan, P., Epperson, J. E., Crawford, R. K., Carpenter, J. M.,
Klippert, T. E., and Wozniak, D. G., J. Appl. Cryst. 30, 208 (1997).
9. Gregg, S. J., and Sing, K. S. W., “Adsorption, surface area and porosity,”
2nd ed. Academic Press, London, 1982.
and macroporosity. Apparently, this latter stage of particle 10. Ramsay, J. D. F., Russell, P. J., and Swanton, S. W., in “Characterization
of Porous Solids II” (F. Rodriguez-Reinoso, J. Rouquerol, K. S. W.
Sing, and K. K. Unger, Eds.), p. 257. Elsevier Science, Amsterdam,
1991.
growth doesnot lead to substantialcrystalline grain-growth,
as can be seen from the smaller grain sizes obtained from
NPD results (Table 1). Doping Nd(III) ions in zirconia im-
11. Lecloux, A. J., Blacher, S., Kessels, P.-Y., Marchot, P., Merlo, J.-L.,
prove the ability of preserving the relatively small particle
size, the mesoporosity, and high surface area at high (600ꢂC)
annealing temperature (see Fig. 5). Because of the differ-
ent charge-compensation effects and ionic size between
Nd3+ and Ce4+ ions in the host lattice, Nd0.1Zr0.9O1.95 and
Ce0.1Zr0.9O2 exhibit distinct crystal phases and microstruc-
ture, as evidenced also from the NPD data (Fig. 1).
Noville, F., and Rirard, J. P., in “Characterization of Porous Solids II”
(F. Rodrı´guez-Reinoso, Ed.), p. 659. Elsevier Science, Amsterdam,
1991.
12. Avery, R. G., and Ramsay, J. D. F., J. Coll. Int. Sci. 42, 597 (1973).
13. Richardson, J. W., Jr., and Faber, J., Jr., Adv. X-ray Anal. 29, 143 (1985).
14. Klug, H. P., and Alexander, L. E., “X-ray Diffraction Procedures for
Polycrystalline and Amorphous Materials,” 2nd ed. Wiley, New York,
1974.
15. Loong, C.-K., Richardson, J. W., Jr., and Ozawa, M., J. Catal. 157, 636
(1995).
16. Rubio, F., Rubio, J., and Oteo, J. L., J. Mat. Sci. 16, 49 (1997).
17. Zeng, Y. W., Riello, P., Benedetti, A., and Fagherazzi, G., J. Non-Cryst.
Solids 185, 78 (1995).
18. Wong, P.-Z., and Bray, A., J. Appl. Cryst. 21, 786 (1988).
19. Vacher, R., Woignier, T., and Pelous, J., Phys. Rev. B 37, 6500 (1988).
20. Hurd, A., and Flower, W. L., J. Coll. Int. Sci. 122, 178 (1988).
21. Bale, H. D., and Schmidt, P. W., Phys. Rev. Lett. 53, 596 (1984).
22. Schaefer, D. W., Brinker, C. J., Wilcoxon, J. P., Wu, D.-Q., Phillips,
J. C., and Chu, B., Mat. Res. Soc. Symp. Proc. 121, 691 (1988).
23. Sinha, S. K., Physica D 38, 310 (1989).
V. CONCLUSION
Neutron powder diffraction, small-angle neutron scat-
tering, and N2 adsorption isotherm measurements were
carried out to characterize the crystal phases and mi-
crostructural changes of zirconia nanopowders subject to
Nd- and Ce-doping and heat treatments. As-prepared pure
ZrO2 samples dried at 290ꢂC exhibit microporosity and
high surface area. Subsequent heat treatment rapidly con-
verts microporous structure to mesoporosity. Below a heat-
treatment temperature of 600ꢂC the nature of the aggregate
can be understood quantitativelyasa mass-fractal. At about
600ꢂC, however, the aggregate transforms from fractal-like
to random packing of well-grown, relatively smooth parti-
cles which resulted in a large reduction of surface area due
to the collapse of mesopores to a macroporous structure.
The Nd- and Ce-modified zirconia, on the other hand, re-
tain the fractal geometry and mesoporosity after annealing
at 600ꢂC. Substituting Zr with ꢁ10 mol% of Nd to form a
solid solution of rare-earth oxide and zirconia retards parti-
cle sintering and preserves the large surface area and ther-
mal stability needed for catalytic functions.
24. Teixeira, J., J. Appl. Cryst. 21, 781 (1988).
25. Sinha, S. K., Freltoft, T., and Kjems, J., in “Kinetics of Aggregation and
Gelation” (F. Family and D. P. Landau, Eds.), p. 87. Elsevier Science,
Amsterdam, 1984.
26. Nicolai, T., Durand, D., and Gimel, J.-C., in “Light Scattering”
(W. Brown, Ed.), p. 201. Oxford Univ. Press, Oxford, 1996.
27. Freltoft, T., Kjems, J. K., and Sinha, S. K., Phys. Rev. B 33, 269 (1986).
28. Porod, G., in “Small Angle X-Ray Scattering” (O. Glatter and
O. Kratky, Eds.), p. 17. Academic Press, New York, 1982.
29. Teixeira, J., in “On Growth and Form, Factal and Non-fractal Patters
in Physics” (H. E. Stanley and N. Ostrowsky, Eds.), p. 145. Nijhoff,
Dordrecht, 1986.
30. Irani, R. R., and Callis, C. F., “Particle Size: Measurement, Interpre-
tation, and Application.” Wiley, New York, 1963.
31. Shannon, R. D., and Prewitt, C. T., Acta Cryst. B 25, 925 (1969).
32. Shannon, R. D., and Prewitt, C. T., Acta Cryst. B 26, 1046 (1970).
33. Zemb, T. N., Hyde, S. T., Derian, P.-J., Barnes, I. S., and Ninham, B. W.,
J. Phys. Chem. 91, 3814 (1987).
ACKNOWLEDGMENT
34. Kaler, E. W., in “Modern Aspects of Small-Angle Scattering”
(H. Brumberger, Ed.), p. 329. Kluwer Academic, Dordrecht, 1993.
35. Debye, P., and Bueche, A. M., J. Appl. Phys. 20, 518 (1949).
36. Zhu, Z., Lin, M., Dagan, G., and Tomkiewicz, M., Mat. Res. Soc. Symp.
Proc. 376, 353 (1995).
We thank J. Nipko and D. G. Wozniak for their assistance in the SANS
experiments. CKL is indebted to S. K. Sinha for many useful discussions.
Work performed at Argonne National Laboratory is supported by the U.S.
DOE, Basic Energy Sciences under Contract W-31-109-ENG-38.
37. Gradzielski, M., and Hoffmann, H., in “The Structure, Dynamics
and Equilibrium Properties of Colloidal Systems” (D. M. Bloor and
E. Wyn-Jones, Eds.), p. 427. Kluwer, Amsterdam, 1990.
38. Ashcroft, N. W., and Lekner, J., Phys. Rev. 145, 83 (1966).
39. Bleier, A., and Cannon, R. M., Mat. Res. Soc. Symp. Proc. 73, 71 (1986).
REFERENCES
1. Green, D. J., Hannink, R. H. J., and Swain, M. V., “Transformation
Toughening of Ceramics,” CRC Press, Boca Raton, FL, 1989.