1
076
Journal of the American Ceramic Society—Bockmeyer and Kru¨ger
Vol. 91, No. 4
4
R. S. Hay, E. E. Boakye, and M. D. Petry, ‘‘Effect of Coating Deposition
Temperature on Monazite Coated Fiber,’’ J. Eur. Ceram. Soc., 20, 589–97 (2000).
5
J. B. Davis, D. B. Marshall, and P. E. D. Morgan, ‘‘Monazite-Containing
Oxide/Oxide Composites,’’ J. Eur. Ceram. Soc., 20, 583–7 (2000).
R. S. Hay and E. E. Boakye, ‘‘Monazite Coatings on Fibers: I, Effect of Tem-
6
perature and Alumina Doping on Coated-Fiber Tensile Strength,’’ J. Am. Ceram.
Soc., 84 [12] 2783–92 (2001).
M. K. Cinibulk, T. A. Parthasarathy, K. A. Keller, and T.-I. Mah, ‘‘Porous
7
Yttrium Aluminum Garnet Fiber Coatings for Oxide Composites,’’ J. Am. Ceram.
Soc., 85 [11] 2703–10 (2002).
E. E. Boakye, R. S. Hay, P. Mogilevsky, and L. M. Douglas, ‘‘Monazite
8
Coatings on Fibers: II, Coating without Strength Degradation,’’ J. Am. Ceram.
Soc., 84 [12] 2793–801 (2001).
E. E. Boakye, R. S. Hay, M. D. Petry, and T. A. Parthasarathy, ‘‘Sol–Gel
9
Synthesis of Zircon–Carbon Precursors and Coatings of Nextel 720t Fiber
Tows,’’ Ceram. Eng. Sci. Proc. A, 20 [3] 165–72 (1999).
E. E. Boakye, R. S. Hay, and M. D. Petry, ‘‘Continuous Coating of Oxide
10
Fiber Tows Using Liquid Precursors: Monazite Coatings on Nextel 720t,’’ J. Am.
Ceram. Soc., 82 [9] 2321–31 (1999).
R. S. Hay and E. E. Boakye, ‘‘Monazite Coatings on Fibers: I, Effect of
11
Temperature and Alumina Doping on Coated-Fiber Tensile Strength,’’ J. Am.
Ceram. Soc., 84 [12] 2783–92 (2001).
E. E. Boakye and P. Mogilevsky, ‘‘Fiber Strength Retention of Lanthanum-
12
and Cerium Monazite-Coated Nextelt 720,’’ J. Am. Ceram. Soc., 87 [2] 314–6
(2004).
T. A. Parthasarathy, C. A. Folsom, and L. P. Zawada, ‘‘Combined Effects of
Exposure to Salt (NaCl) Water and Oxidation on the Strength of Uncoated and
Fig. 8. Secondary electron microscope images of a typical fracture
surface of degraded coated Nextelt 610 fiber.
13
BN-Coated Nicalont Fibers,’’ J. Am. Ceram. Soc., 81 [7] 1812–8 (1998).
J. B. Davis, D. B. Marshall, and P. E. D. Morgan, ‘‘Monazite-Containing
Oxide/Oxide Composites,’’ J. Eur. Ceram. Soc., 20, 583–7 (2000).
M. K. Cinibulk, ‘‘Hexaluminates as a Cleavable Fiber-Matrix Interphase:
Synthesis, Texture Development, and Phase Compatibility,’’ J. Eur. Ceram. Soc.,
a thermal expansion mismatch, the constrained film shrinkage,
or both.
14
15
For fractographic analysis original fracture surfaces of de-
graded coated fibers were studied with SEM. As a typical ex-
ample a fracture surface of a fiber coated with C_8YSZ and
calcination at 11501C is given in Fig. 8. It can be clearly seen
that the fracture starts from the surface at a position where film
thickness is larger. This observation appears for all four coating
precursors. This confirms the assumption that stress concentra-
tion due to inhomogeneous coating thickness is the cause of
fiber degradation.
2
0, 569–82 (2000).
X. Gu, P. A. Trusty, E. G. Butler, and C. B. Ponton, ‘‘Deposition of Zirconia
16
Sols on Woven Fibre Performs Using a Dip-Coating Technique,’’ J. Eur. Ceram.
Soc., 20, 675–84 (2000).
17
N. I. Baklanova, A. T. Titov, A. I. Boronin, and S. V. Kosheev, ‘‘The Yttria-
Stabilized Zirconia and Interfacial Coating on Nicalont Fiber,’’ J. Eur. Cer. Soc.,
6 [9] 1725–36 (2006).
2
18
H. Li, J. Lee, M. R. Libera, W. Y. Lee, A. Kebbede, M. J. Lance, H. Wang,
and G. N. Morscher, ‘‘Morphological Evolution and Weak Interface Develop-
ment within Chemical-Vapor-Deposited Zirconia Coating Deposited on Hi-
Nicalont Fiber,’’ J. Am. Ceram. Soc., 85 [6] 1561–8 (2002).
1
9
P. C. Lo
Prepared from Soluble Powders and their Application,’’ J. Sol–Gel Sci. Technol.,
9, 473–7 (2000).
¨
bmann, R. Jahn, S. Seifert, and D. Sporn, ‘‘Inorganic Thin Films
IV. Conclusion
1
20
Crystalline and amorphous ZrO
2
and 8YSZ precursors showed
¨
¨
R. Kruger, M. J. Bockmeyer, A. Dutschke, and P. C. Lobmann, ‘‘Continuous
Sol–Gel Coating of Ceramic Multifilaments: Evaluation of Fiber Bridging by
Three Point Bending Test,’’ J. Am. Ceram. Soc., 89 [7] 2080–8 (2006).
different effects on the strength coated Nextelt 610 fibers. The
precursors and resulting films differed in their decomposition,
phase transformation and densification behavior.
21
¨
C. Peters, M. Bockmeyer, R. Kruger, A. Weber, and E. Ivers-Tiffee, ‘‘Pro-
´
cessing of Dense Nanocrystalline Zirconia Thin Films by Sol–Gel, in Current and
Future Trends of Functional Oxide Films’’; pp. GG16-01 in Materials Research
Society Symposium Proceedings, Vol. 928E, Edited by D. Kumar, V. Craciun,
M. Alexe, and K. K. Singh. Warrendale, PA, 2006.
It was found that stress corrosion by precursor decomposi-
tion products was not a sufficient explanation for the observed
fiber degradation. Rather, the individual densification behavior
of the coatings was in good correlation with fiber strength.
In densified coatings large tensile stresses are present by ther-
mal expansion mismatch and the shrinking process constrained
by the fiber. Stress concentration arising from inhomogeneous
film thickness was identified as the cause of fiber degradation.
Degradation can be avoided for coatings that scarcely
densify, have weak adhesion to the fiber or can relax stresses
by e.g. phase transformation.
22
¨ ¨
2
P. C. Lobmann and P. Rohlen, ‘‘Industrial Processing of TiO Thin Films
from Soluble Precursor Powders,’’ Glass Sci. Technol., 76 [3] 1–7 (2003).
¨
M. Bockmeyer and P. Lobmann, ‘‘Densification and Microstructural Evolu-
23
tion of TiO2 Films Prepared by Sol–Gel Processing,’’ Chem. Mater., 18 [18]
4478–85 (2006).
24 plus
Bruker advanced X-ray solutions: DIFFRAC REFSIM Version 2.0. Bruker
AXS, Karlsruhe, Germany, 2000.
K. Maex, M. R. Baklanov, D. Shamiryan, F. Iacopi, S. H. Brongersma,
25
and Z. S. Yanovitskaya, ‘‘Low Dielectric Constant Materials for Microelectron-
ics,’’ J. Appl. Phys., 93 [11] 8793–884 (2003).
26
M. H. Bocanegra-Bernal and S. D’iaz de Torre, ‘‘Review: Phase Transitions in
Zirconium Dioxide and Related Materials for High Performance Engineering
The generalization of the presented results to other coating
materials and fiber types will be the aim of future investigations.
Ceramics,’’ J. Mater. Sci., 37, 4947–71 (2002).
A. Suresh, M. J. Mayo, W. D. Porter, and C. J. Rawn, ‘‘Crystallite and Grain-
27
Size-Dependent Phase Transformations in Yttria-Doped Zirconia,’’ J. Am. Ceram.
Soc., 86 [2] 360–2 (2003).
M. W. Pitcher, S. V. Ushakov, A. Navrotskyz, B. F. Woodfield, G. Li,
Acknowledgments
28
The authors would like to thank Dennis Troegel and Johannes Mederer from
¨
Chair for Chemical Technology of Materials Synthesis, University of Wurzburg,
Germany for synthesis and supply of the crystalline zirconia precursors.
J. Boerio-Goates, and M. B. Tissue, ‘‘Energy Crossovers in Nanocrystalline Zir-
conia,’’ J. Am. Ceram. Soc., 88 [1] 160–7 (2005).
29
M. Bockmeyer, ‘‘Structure and Densification of Thin Films Prepared from
Soluble Precursor Powders by Sol-Gel-Processing’’; Ph.D. Thesis, University
Wurzburg, 2007.
¨
3
0
¨
A. Mehner, H. Klumper-Westkamp, F. Hoffmann, and P. Mayr, ‘‘Crystalli-
References
zation and Residual Stress Formation of Sol–Gel-Derived Zirconia Films,’’ Thin
Solid Films, 308–309, 363–8 (1997).
R. Brenier, A. Gagnaire, C. Urlacher, J. Mugnier, and M. Brunel, ‘‘Stress
1
¨
J. B. Davis, J. P. A. Lofvander, A. G. Evans, E. Bischoff, and M. L. Emiliani,
‘Fiber Coating Concepts for Brittle-Matrix Composites,’’ J. Am. Ceram. Soc., 76
5] 1249–57 (1993).
R. J. Kerans, R. S. Hay, T. A. Parthasarathy, and M. K. Cinibulk, ‘‘Interface
31
‘
[
Development in Amorphous Zirconium Oxide Films Prepared by Sol–Gel
Processing,’’ Thin Solid Films, 338, 136–41 (1999).
2
32
Design for Oxidation-Resistant Ceramic Composites,’’ J. Am. Ceram. Soc., 85 [11]
2
D. Ashkin, R. A. Haber, and J. B. Wachtman, ‘‘Elastic Properties of Porous
Silica Derived from Colloidal Gels,’’ J. Am. Ceram. Soc., 73 [11] 3376–81 (1990).
599–632 (2002).
T. Helmer, H. Peterlik, and K. Kromp, ‘‘Coating of Carbon Fibers—The
Strength of the Fibers,’’ J. Am. Ceram. Soc., 78 [1] 133–6 (1995).
3
33
H. Salmang and H. Scholze, Keramik, Teil 2. Springer-Verlag, Heidelberg,
&
1983.