Zirconyl complexes of biologically active molecules
513
bipyridyl derivatives of (4-amino)-hippuric acid and of L-proline.
Polyhedron. 1999;8:2505–10.
0.000
4
3. Terron A, Fiol JJ, Herrero LA, Garcia-Rasso A, Apella MC,
Caubet A, et al. Metal-amino acid (or peptide)-nuclesoide (or
related bases) ternary complexes. An Quim Int Ed. 1997;93:60–7.
4. Garcia-Raso A, Fiol JJ, Adrover B, Moreno V, Molins E, Mata L.
Synthesis and structure of isocytosine ternary copper(II) com-
plexes. Dalton Trans J Chem Soc. 1998;1031–6.
5. Ashby CIH, Paton WF, Brown TL. Nitrogen-14 nuclear quadrupole
resonance spectra of the coordinated amino group and ofcoordinated
imidazole. Crystal and molecular structures of chloroglycylglyci-
nato(imidazole)cadmium. J Am Chem Soc. 1980;102:2990–8.
6. Morelock MM, Good ML, Trefonas LM, Karraker DG, Maleki L,
Eichelberger HR, et al. Metal ion complexes of alpha amino
acids. Structure and magnetic properties of the nickel and cobalt
hippurates. Pseudo-one-dimensional magnetic systems. J Am
Chem Soc. 1979;101:4858–66.
0.010
0.020
0.030
3
2
1
0
200
400
600
800
1000
[ZrO(MPB) Cl
]
4
2
Temperature/°C
Fig. 6 TG and DTG curves of [ZrO(MPB)4Cl2] in air
7. Grewe H, Udupa MR, Kerbs B. Crystal and molecular structure
of bis(N-benzoylglycinato)triaquozinc(II) dihydrate. Inorg Chim
Acta. 1982;63:119–24.
8. Brzyska W, Hakim M. Thermal decomposition of Co(II), Ni(II),
Cu(II) and Zn(II) hippurates. J Therm Anal Calorim. 1990;36:847–53.
9. Brzyska W, Hakim M. Thermal decomposition of Y, La and light
lanthanide complexesof hippuric acid. J Therm Anal. 1988;34:47–53.
10. Refat MS, Teleb SM, Sadeek SA, Khater HM, El-Megharbel SM.
Synthesis and characterization of some hippurato rare earth metal
complexes. J Kor Chem Soc. 2005;49:3261–68.
11. Sadeek SA, Refat MS, Teleb SM, Megharbel EI. Synthesis and
characterization of V(III), Cr(III) and Fe(III) hippurates. J Mol
Struct. 2005;737:139–45.
12. Allan JR, Dalrymple J. The thermal, spectral and magnetic
studies of hippuric acid compounds of cobalt (II), nickel (II),
copper (II) and zinc (II) ions. Thermochim Acta. 1991;185:83–9.
13. Khayyal MT, El-Ghazaly M, El-Khatib AS, Hatem A. Tolera-
bility of mofebutazone in asthmatic patients. Int J Clin Pharmacol
Res. 1995;15:145–51
14. Paradies HH, Ziedrich KH, Hans H, Flaeming. Zur-keto-enol-
tomtomerie von 1-phenyl 4n-butyl-pyrazolidin-(3,5)dion. Acta
Pharm Technol. 1987;33:180–8.
15. Suma S, Sudarsanakumar MR, Nair CGR, Prabhakaran CP.
Synthesis and characterization of chromium(III), manganese(III),
iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II)
and mercury(II) complexes of monophenylbutazone. Indian
J Chem. 1994;33A:1107–9.
16. Kurtz SK, Perry TT. A powder technique for the evaluation of
nonlinear optical materials. J Appl Phys. 1968;39:3798–813.
17. Kumar G, Srivastava M. Spectral and magnetochemical studies of
nickel(II) and cobalt(II) complexes of hippuric acid. Rev Chim
Miner. 1979;16:14–8.
18. Nakamoto K. Infrared and Raman spectra of inorganic and
coordination compounds. 4th ed. New York: Wiley; 1986.
19. Refat MS, EI Korashy SA, Ahmed S. Synthesis and character-
ization of Mn(II), Au(III) and Zr(IV) hippurates complexes.
Spectrochim Acta Part A Biomol Spectrosc. 2008;70:840–9.
Table 7 Kinetic parameters of the complex [ZrO(MPB)3(OH)2] in
air
Stages Methods n E/
DS/
logA/
r
kJ mol-1 J K-1 mol-1 s-1
1
2
I
0.9 18.92
0.9 20.54
0.9 20.28
0.9 97.02
0.9 94.51
0.9 94.18
-264.79
-269.00
-271.09
-154.78
-158.47
-159.76
-0.57 0.973304
-0.79 0.959331
-0.90 0.958479
5.17 0.985213
4.98 0.982118
4.91 0.981961
II
III
I
II
III
Table 8 Kinetic parameters of the complex [ZrO (MPB)4Cl2] in air
Stages Method n E/
DS/
logA/
s-1
r
kJ mol-1 J k-1mol-1
1
2
I
0.9 50.39
-197.07
-196.12
-197.58
-247.33
-253.35
-255.32
2.97 0.993648
3.02 0.992107
2.94 0.992021
0.34 0.962449
0.03 0.940292
-0.08 0.939027
II
III
I
0.9 51.40
0.9 51.15
0.9 35.46
0.9 34.13
0.9 33.76
II
III
Acknowledgements The authors are grateful to the authorities of
the SAIF, Cochin University of Science and Technology, and SAIF,
IIT Chennai, for providing the instrumental facilities. We are also
grateful to Prof P.K. Das, Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore, for NLO studies. S.S is grateful to
UGC for financial assistance and J.K.R is thankful to University of
Kerala for the award of a fellowship.
´
20. Droz_dz_-Ciesla E, Małecki A. Mechanism of thermal decomposition of
zirconyl oxalate ZrOC2O4. J Therm Anal Calorim. 2008;92:939–44.
21. Coats AW, Redfern JP. Kinetic parameters from thermogravi-
metric data. Nature. 1964;201:68–9.
References
22. MacCallum JR, Tanner. The kinetics of thermogravimetry. J Eur
Polym. 1970;6:1033–7.
23. Muraleedharan Nair MK, Radhakrishnan PK. Thermal decom-
position kinetics of lanthanum complexes of 1,2-(Diimino-4’-
Antipyrinyl)ethane. Thermochim Acta. 1997;292:115–22.
24. Thankamony M, Sindhu Kumari B, Rijulal G, Mohanan K.
Lanthanum(III) chloride complexes with heterocyclic Schiff
bases. J Therm Anal Calorim. 2009;95:259–66.
1. Capllonch MC, Garcia-Raso A, Terron A, Apella MC, Espinosa E,
Molins E. Interactions of d10 metal ions with hippuric acid and cyto-
sine X-ray structure of the first cadmium (II)-amino acid derivative-
nucleobase ternary compound. J Inorg Biochem. 2001;85:173–8.
2. Sgarabotto P, Bisceglie F, Pelosi G, Abdel-Rahman L. Synthesis,
x-ray crystal structures and characterization of copper(II)-2,2’-
123