X. Zhang et al. / Journal of Catalysis 279 (2011) 75–87
[3] G.C. Bond, D.T. Thompson, Gold Bull. 33 (2000) 41.
87
[4] M.C. Kung, R.J. Davis, H.H. Kung, J. Phys. Chem. C 111 (2007) 11767.
[5] X. Zhang, H. Wang, B.-Q. Xu, J. Phys. Chem. B 109 (2005) 9678.
[6] M.S. Chen, D.W. Goodman, Catal. Today 111 (2006) 22.
[7] P. Claus, Appl. Catal. A 291 (2005) 222.
[8] A. Comas-Vives, C. Gonzalez-Arellano, A. Corma, M. Iglesias, F. Sánchez, G.
Ujaque, J. Am. Chem. Soc. 128 (2006) 4756.
[9] G.C. Bond, P.A. Sermon, G. Webb, D.A. Buchanan, P.B. Wells, J. Chem. Soc. Chem.
Commun. (1973) 444.
[10] D.A. Buchanan, G. Webb, J. Chem. Soc. Faraday Trans. 71 (1975) 134.
[11] P.A. Sermon, G.C. Bond, P.B. Wells, J. Chem. Soc. Faraday Trans. 75 (1979) 385.
[12] M. Okumura, T. Akita, M. Haruta, Catal. Today 74 (2002) 265.
[13] J. Jia, K. Haraki, J.N. Kondo, K. Domen, K. Tamaru, J. Phys. Chem. B 104 (2000)
11153.
[14] J.E. Bailie, G.J. Hutchings, Chem. Commun. (1999) 2151.
[15] J.E. Bailie, H.A. Abdullah, J.A. Anderson, C.H. Rochester, N.V. Richardson, N.
Hodge, J.-G. Zhang, A. Burrows, C.J. Kiely, G.J. Hutchings, Phys. Chem. Chem.
Phys. 3 (2001) 4113.
[16] J.E. Bailie, G.J. Hutchings, Catal. Commun. 2 (2001) 291.
[17] C. Mohr, H. Hofmeister, P. Claus, J. Catal. 213 (2003) 86.
[18] H. Shi, N. Xu, D. Zhao, B.-Q. Xu, Catal. Commun. 9 (2008) 1949.
[19] H. Arnold, F. Döbert, J. Gaube, in: G. Ertl, H. Knözinger, J. Weitkamp (Eds.),
Handbook of Heterogeneous Catalysis, vol. 5, VCH Weinheim, 1997, p. 2165.
[20] S. Lin, M.A. Vannice, Catal. Lett. 10 (1991) 47.
[21] B. Hammer, J.K. Norskov, Nature 376 (1995) 238.
[22] S.A. Varganov, R.M. Olson, M.S. Gordon, G. Mills, H. Metiu, J. Chem. Phys. 120
(2004) 5169.
[23] T. Fujitani, I. Nakamura, T. Akita, M. Okumura, M. Haruta, Angew. Chem. Int.
Ed. 48 (2009) 9515.
Scheme 3. Proposed reaction routes over zirconia-supported gold catalyst for the
selective hydrogenation of 1,3-butadiene. Note: the activated hydrogen atoms are
shown as the HI species.
either C@C bonds with the surface Au0 and/or Au3+ sites [10,52], or
Zr4+ or Zr3+ sites at the surface of zirconia [61]. Further reaction be-
tween the adsorbed butadiene and the activated hydrogen pro-
duces the product butenes.
The stability of surface Au3+ ions in the reducing atmosphere of
the hydrogenation reaction can be critical for applications. The
slightly changed catalytic rates, as observed in Figs. 11 and 13,
and Fig. S3, would demonstrate that the active Au3+ ions in our cat-
alysts were stable enough to survive the reaction. Our TPR data
(Fig. 5) evidenced that the onset reduction temperature for the
Au3+ ions was always higher than the reaction temperature
(393 K). Stabilization of Au3+ ions by interaction with the support
oxide was also documented in the literature, especially when
CeO2 [28,29] and ZrO2 [45,65] were used as the support oxides.
Our quantitative TPR measurement revealed that the quantity of
Au3+ ions in the Au/ZrO2-CP-673-473 catalyst did not change after
it was used to catalyze the hydrogenation reaction for 6 h. This is a
piece of strong evidence for the catalytic stability of Au3+ ions in
the hydrogenation reaction.
[24] M. Boronat, F. Illas, A. Corma, J. Phys. Chem. A 113 (2009) 3750.
[25] G.J. Hutchings, M.S. Hall, A.F. Carley, P. Landon, B.E. Solsona, C.J. Kiely, A.
Herzing, M. Makkee, J.A. Moulijn, A. Overweg, J.C. Fierro-Gonzalez, J. Guzman,
B.C. Gates, J. Catal. 242 (2006) 71.
[26] E.D. Park, J.S. Lee, J. Catal. 186 (1999) 1.
[27] X. Zhang, H. Shi, B.-Q. Xu, Catal. Today 122 (2007) 330.
[28] S. Carrettin, A. Corma, M. Iglesias, F. Sánchez, Appl. Catal. A 291 (2005) 247.
[29] Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301 (2003) 935.
[30] J. Guzman, B.C. Gates, J. Catal. 226 (2004) 111.
[31] X. Zhang, H. Shi, B.-Q. Xu, Angew. Chem. Int. Ed. 44 (2005) 7132.
[32] X. Zhang, H. Shi, B.-Q. Xu, Science and Technology in Catalysis 2006, in: K.
Eguchi, M. Machida, I. Yamanaka, Eds., Kondansha-Elsevier, Stud. Surf. Sci.
Catal., vol. 172, 2007, p. 481.
[33] M. Daté, M. Haruta, J. Catal. 201 (2001) 221.
[34] C.K. Costello, J.H. Yang, H.Y. Law, Y. Wang, J.N. Lin, L.D. Marks, M.C. Kung, H.H.
Kung, Appl. Catal. A 243 (2003) 15.
[35] B.-Q. Xu, J.-M. Wei, J.-L. Li, Q.-M. Zhu, Top. Catal. 22 (2003) 77.
[36] J. Kondo, Y. Sakata, K. Domen, K. Maruya, T. Onishi, J. Chem. Soc. Faraday Trans.
86 (1990) 397.
[37] G.K. Chuah, S. Jaenicke, B.K. Pong, J. Catal. 175 (1998) 80.
[38] S.L. Jones, C.J. Norman, J. Am. Ceram. Soc. 71 (1988) C190.
[39] Y. Nakano, T. Iizuka, H. Hattori, K. Tanabe, J. Catal. 57 (1978) 1.
[40] L.L. Hench, J.K. West, Chem. Rev. 90 (1991) 33.
[41] K.T. Jung, A.T. Bell, J. Mol. Catal. A 163 (2000) 27.
[42] M.G. Mason, Phys. Rev. B 27 (1983) 748.
[43] N.A. Hodge, C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J. Hutchings, Q.A.
Pankhurst, F.E. Wagner, R.R. Rajaram, S.E. Golunski, Catal. Today 72 (2002)
133.
[44] J. Guzman, B.C. Gates, J. Phys. Chem. B 107 (2003) 2242.
[45] L. Ilieva, J.W. Sobczak, M. Manzoli, B.L. Su, D. Andreeva, Appl. Catal. A 291
(2005) 85.
5. Conclusions
This work shows that the gold oxidation state and hydroxyl
groups on the support oxide surface played vital roles in hydroge-
nation catalysis by Au/ZrO2. A continued activity decrease is seen
when the density of surface hydroxyl groups is lowered by elevat-
ing the pre-calcination temperature of ZrO2. Au nanoparticles sup-
ported on OH-free ZrO2 are inactive, but become highly active after
they are subjected to a simple water treatment. Catalytic ensem-
bles involving metallic Au0 atoms and Au3+ ions on OH-carrying
ZrO2 have been proposed to address the structural features of ac-
tive sites in these Au/ZrO2 catalysts for H2 activation.
[46] J.T. Calla, R.J. Davis, Catal. Lett. 99 (2005) 21.
[47] Y. Guan, E.J.M. Hensen, Phys. Chem. Chem. Phys. 11 (2009) 9578.
[48] P. Claus, A. Brücker, C. Mohr, H. Hofmeister, J. Am. Chem. Soc. 122 (2000)
11430.
[49] H. Liu, L. Feng, X. Zhang, Q. Xue, J. Phys. Chem. 99 (1995) 332.
[50] L. Zhao, H. Liu, W. Bu, J. Gao, C. Xu, X. Zhang, Y. Chen, Function of Water for the
Adsorption of H2 and 1,3-butadiene on Au (1 1 1): A DFT Study, unpublished
results.
Acknowledgment
[51] E.F. Meyer, R.L. Burwell, J. Am. Chem. Soc. 85 (1963) 2881.
[52] X.F. Yang, A.Q. Wang, Y.L. Wang, T. Zhang, J. Li, J. Phys. Chem. C 114 (2010)
3131.
[53] F. Moreau, G.C. Bond, A.O. Taylor, J. Catal. 231 (2005) 105.
[54] Z.P. Liu, C.M. Wang, K.N. Fan, Angew. Chem. Int. Ed. 45 (2006) 6865.
[55] A. Hugon, L. Delannoy, C. Louis, Gold Bull. 41 (2008) 127.
[56] X. Zhang, B.-Q. Xu, Chem. J. Chin. Univ. 26 (2005) 106.
[57] T. Onishi, H. Abe, K. Maruya, K. Domen, J. Chem. Soc. Chem. Commun. 9 (1985)
617.
We thank the NSF of China (20921001 and 20903119) and the
Program for New Century Excellent Talents in University (NCET)
for financial support.
Appendix A. Supplementary material
Supplementary data associated with this article can be found, in
[58] J. Kondo, K. Domen, K. Maruya, T. Onishi, Chem. Phys. Lett. 188 (1992) 443.
[59] K. Tanabe, Mater. Chem. Phys. 13 (1985) 347.
[60] D. Martin, D. Duprez, J. Phys. Chem. B 101 (1997) 4428.
[61] Y. Nakano, T. Yamaguchi, K. Tanabe, J. Catal. 80 (1983) 307.
[62] A.C. Gluhoi, H.S. Vreeburg, J.W. Bakker, B.E. Nieuwenhuys, Appl. Catal. A 291
(2005) 145.
[63] E. Bus, J.T. Miller, J.A. van Bokhoven, J. Phys. Chem. B 109 (2005) 14581.
[64] H.H. Kung, M.C. Kung, C.K. Costello, J. Catal. 216 (2003) 425.
[65] X. Zhang, A. Corma, Angew. Chem. Int. Ed. 47 (2008) 4358.
References
[1] G.C. Bond, C. Louis, D.T. Thompson (Eds.), Catalysis Science Series 6, Catalysis
by Gold, Imperial College Press, United Kingdom, 2006. p. 1.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, J.
Catal. 144 (1993) 175.