B.J. Crielaard et al. / European Journal of Pharmaceutical Sciences 45 (2012) 429–435
435
Cerquaglia, C., Diaco, M., Nucera, G., La Regina, M., Montalto, M., Manna, R., 2005.
Pharmacological and clinical basis of treatment of Familial Mediterranean Fever
(FMF) with colchicine or analogues: an update. Curr. Drug Targets Inflamm.
Allergy 4, 117–124.
Coimbra, M., Isacchi, B., van Bloois, L., Torano, J.S., Ket, A., Wu, X., Broere, F.,
Metselaar, J.M., Rijcken, C.J.F., Storm, G., Bilia, R., Schiffelers, R.M., 2011.
Improving solubility and chemical stability of natural compounds for medicinal
use by incorporation into liposomes. Int. J. Pharm. 416, 433–442.
Fenske, D.B., Cullis, P.R., 2008. Liposomal nanomedicines. Expert. Opin. Drug. Deliv.
5, 25–44.
to induce a therapeutic effect. Although the optimal release profile
at the target site needs to be established experimentally, the pre-
sented prodrug strategy shows that premature leakage in the cir-
culation is prevented.
4. Conclusions
This work demonstrates that the release kinetics of colchici-
noids from long-circulating liposomes can be tailored by encapsu-
lating rationally designed PEGylated colchicinoid prodrugs that
hydrolyze in the aqueous interior. Two PEGylated colchicine-de-
rived prodrugs were synthesized by substituting the acyl-moiety
with a hydroxyl containing moiety to allow for esterification with
an acid-functionalized PEG. By employing glycolic or lactic acid to
functionalize colchicine, and by using different PEG acids, the
hydrolysis rate of the prodrug could be controlled. Both designed
prodrugs were retained in liposomes, whereas colchicine leaked
out instantaneously. Indeed, the release kinetics of colchicinoids
from the liposomal prodrug formulations appeared determined
by the hydrolysis rate of the prodrug.
Iorio, M.A., Molinari, M., Brossi, A., 1981. Synthesis of colchifoline from deacetyl-
colchiceine. Can. J. Chem. 59, 283–284.
Jordan, M.A., Wilson, L., 2004. Microtubules as a target for anticancer drugs. Nat.
Rev. Cancer 4, 253–265.
Kanthou, C., Tozer, G.M., 2007. Tumour targeting by microtubule-depolymerizing
vascular disrupting agents. Expert Opin Ther Targets 11, 1443–1457.
Keith, M.P., Gilliland, W.R., 2007. Updates in the management of gout. Am. J. Med.
120, 221–224.
Kulkarni, S.B., Singh, M., Betageri, G.V., 1997. Encapsulation, stability and in-vitro
release characteristics of liposomal formulations of colchicine. J. Pharm.
Pharmacol. 49, 491–495.
Lagnoux, D., Darbre, T., Schmitz, M.L., Reymond, J.L., 2005. Inhibition of mitosis
by glycopeptide dendrimer conjugates of colchicine. Chem. Eur. J. 11,
3941–3950.
Lammers, T., Hennink, W.E., Storm, G., 2008. Tumour-targeted nanomedicines:
principles and practice. Br. J. Cancer 99, 392–397.
Lippert, J.W., 3rd, 2007. Vascular disrupting agents. Biorg. Med. Chem. 15,
605-615.
Mons, S., Veretout, F., Carlier, M.F., Erk, I., Lepault, J., Trudel, E., Salesse, C., Ducray, P.,
Mioskowski, C., Lebeau, L., 2000. The interaction between lipid derivatives of
colchicine and tubulin: Consequences of the interaction of the alkaloid with
lipid membranes. BBA-Biomembranes 1468, 381–395.
Nguyen, T.L., McGrath, C., Hermone, A.R., Burnett, J.C., Zaharevitz, D.W., Day, B.W.,
Wipf, P., Hamel, E., Gussio, R., 2005. A common pharmacophore for a diverse set
of colchicine site inhibitors using a structure-based approach. J. Med. Chem. 48,
6107–6116.
Nihei, Y., Suzuki, M., Okano, A., Tsuji, T., Akiyama, Y., Tsuruo, T., Saito, S., Hori, K.,
Sato, Y., 1999. Evaluation of antivascular and antimitotic effects of tubulin
binding agents in solid tumor therapy. Jpn. J. Cancer Res. 90, 1387–1395.
Parveen, S., Sahoo, S.K., 2006. Nanomedicine: clinical applications of polyethylene
glycol conjugated proteins and drugs. Clin. Pharmacokinet. 45, 965–988.
Pasquier, E., Honore, S., Braguer, D., 2006. Microtubule-targeting agents in
angiogenesis: where do we stand? Drug Resist. Update 9, 74–86.
Pasquier, E., Kavallaris, M., 2008. Microtubules: a dynamic target in cancer therapy.
IUBMB Life 60, 165–170.
Consequently, by using different biodegradable linkers, the release
of colchicinoids from long-circulating liposomes can be tailored.
Acknowledgements
This work was supported by MediTrans, an Integrated Project
funded by the European Commission under the ‘‘nanotechnologies
and nano-sciences, knowledge-based multifunctional materials
and new production processes and devices’’ (NMP), thematic prior-
ity of the Sixth Framework Program.
References
Bagnato, J.D., Eilers, A.L., Horton, R.A., Grissom, C.B., 2004. Synthesis and
Petersel, D., Schlesinger, N., 2007. Treatment of acute gout in hospitalized patients.
J. Rheumatol. 34, 1566–1568.
characterization of
a cobalamin-colchicine conjugate as a novel tumor-
targeted cytotoxin. J. Org. Chem. 69, 8987–8996.
Quinn, F.R., Neiman, Z., Beisler, J.A., 1981. Toxicity and quantitative structure-
activity relationships of colchicines. J. Med. Chem. 24, 636–639.
Rautio, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Jarvinen, T., Savolainen,
J., 2008. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7,
255–270.
Ravelli, R.B.G., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A., Knossow, M.,
2004. Insight into tubulin regulation from a complex with colchicine and a
stathmin-like domain. Nature 428, 198–202.
Roberts, M.J., Bentley, M.D., Harris, J.M., 2002. Chemistry for peptide and protein
PEGylation. Adv. Drug Deliv. Rev. 54, 459–476.
Sharma, P.N., Brossi, A., Silverton, J.V., Chignell, C.F., 1984. Synthesis and binding to
tubulin of colchicine spin probes. J. Med. Chem. 27, 1729–1733.
Terkeltaub, R.A., 2009. Colchicine update: 2008. Semin. Arthritis Rheum. 38, 411–
419.
Thorpe, P.E., 2004. Vascular targeting agents as cancer therapeutics. Clin. Cancer
Res. 10, 415–427.
Torchilin, V.P., 2005. Recent advances with liposomes as pharmaceutical carriers.
Nat. Rev. Drug Discov. 4, 145–160.
Tozer, G.M., Kanthou, C., Baguley, B.C., 2005. Disrupting tumour blood vessels. Nat.
Rev. Cancer 5, 423–435.
Zamora, J.M., Pearce, H.L., Beck, W.T., 1988. Physical-chemical properties shared by
compounds that modulate multidrug resistance in human leukemic cells. Mol.
Pharmacol. 33, 454–462.
Baguley, B.C., Holdaway, K.M., Thomsen, L.L., Zhuang, L., Zwi, L.J., 1991. Inhibition of
growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for
a vascular mechanism. Eur. J. Cancer 27, 482–487.
Baluk, P., Hashizume, H., McDonald, D.M., 2005. Cellular abnormalities of blood
vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111.
Bell, S.J., Fam, C.M., Chlipala, E.A., Carlson, S.J., Lee, J.I., Rosendahl, M.S., Doherty,
D.H., Cox, G.N., 2007. Enhanced circulating half-life and antitumor activity of a
site-specific pegylated interferon-
299–305.
a protein therapeutic. Bioconjug. Chem. 19,
Bhattacharyya, B., Panda, D., Gupta, S., Banerjee, M., 2008. Anti-mitotic activity of
colchicine and the structural basis for its interaction with tubulin. Med. Res.
Rev. 28, 155–183.
Bibas, R., Gaspar, N.K., Ramos-e-Silva, M., 2005. Colchicine for dermatologic
diseases. J. Drugs Dermatol. 4, 196–204.
Bombuwala, K., Kinstle, T., Popik, V., Uppal, S.O., Olesen, J.B., Vina, J., Heckman, C.A.,
2006. Colchitaxel, a coupled compound made from microtubule inhibitors
colchicine and paclitaxel. Beilstein J. Org. Chem. 2, 13.
Brossi, A., Sharma, P.N., Atwell, L., Jacobson, A.E., Iorio, M.A., Molinari, M., Chignell,
C.F., 1983. Biological effects of modified colchicines. 2. Evaluation of catecholic
colchicines, colchifolines, colchicide, and novel N-acyl- and N-aroyldeacetyl-
colchicines. J. Med. Chem. 26, 1365–1369.
Carmeliet, P., Jain, R.K., 2000. Angiogenesis in cancer and other diseases. Nature 407,
249–257.