a
Table 1 Half-lives for acid decomplexation and reduction potentials of copper(II) complexes
Complex
5 M HCl, 50 1C
5 M HCl, 90 1C
12 M HCl, 90 1C
Ered/V vs. Ag/AgCl
Cu–TETA
Cu–TE2A
4.1(3) h
92.6(2) h
4.7(4) min
46.2(8) min
1.1(3) min
2.6(5) min
ꢂ0.88 (irrev)
ꢂ1.10 (irrev)
a
Half-lives are mean values of 2–3 experiments.
project of MOST and KOSEF. The Korea Basic Science
Institute (Daegu) is acknowledged for the NMR and MS
measurements.
Notes and references
1
2
3
V. Alexander, Chem. Rev., 1995, 95, 273–342.
S. Liu, Adv. Drug Delivery Rev., 2008, 60, 1347–1370.
T. K. Nayak and M. W. Brechbiel, Bioconjugate Chem., 2009, 20,
8
25–841.
L. M. De Leon-Rodriguez and Z. Kovacs, Bioconjugate Chem.,
008, 19, 391–402.
J. Huskens, D. A. Torres, Z. Kovacs, J. P. Andre, C. F. G.
C. Geraldes and A. D. Sherry, Inorg. Chem., 1997, 36, 1495–1503.
T. J. Wadas and C. J. Anderson, Nat. Protoc., 2006, 1, 3062–3068.
C. A. Boswell, X. Sun, W. Niu, G. R. Weisman, E. H. Wong,
A. L. Rheingold and C. J. Anderson, J. Med. Chem., 2004, 47,
1465–1474.
4
5
2
64
Fig. 3 Biodistribution data of Cu-labelled TETA and TE2A at 24 h
6
7
post-injection (five Sprague-Dawley rats per time point).
6
its TETA counterpart; the activity uptake of Cu–TE2A
4
8
9
E. H. Wong, G. R. Weisman, D. C. Hill, D. P. Reed, M. E. Rogers,
J. S. Condon, M. A. Fagan, J. C. Calabrese, K.-C. Lam, I. A. Guzei
and A. L. Rheingold, J. Am. Chem. Soc., 2000, 122, 10561–10572.
B. E. Rogers, C. J. Anderson, J. M. Connett, L. W. Guo,
W. B. Edwards, E. L. C. Sherman, K. R. Zinn and M. J. Welch,
Bioconjugate Chem., 1996, 7, 511–522.
6
was lower than that of Cu–TETA in all organs at 24 h
4
6
post-injection (Fig. 3), which suggests that Cu–TE2A is more
4
6
stable under physiological conditions than Cu–TETA and
4
that the transchelation of the free copper ion from the
13,22
6
4
Cu–TE2A complex is minimized.
The higher stability
1
1
0 R. Delgado, V. Felix, L. M. P. Lima and D. W. Price, Dalton
Trans., 2007, 2734–2745.
1 T. M. Jones-Wilson, K. A. Deal, C. J. Anderson, D. W. McCarthy,
Z. Kovacs, R. J. Motekaitis, A. D. Sherry, A. E. Martell and
M. J. Welch, Nucl. Med. Biol., 1998, 25, 523–530.
64
and faster clearance pattern of Cu–TE2A might be attributed
to its core coordination sphere and overall charge. While the
6
4
64
overall charge of Cu–TE2A is neutral, that of Cu–TETA is
ꢂ2 under physiological conditions because of the presence of
two non-coordinated carboxylate groups.
12 A. Bianchi, L. Calabi, C. Giorgi, P. Losi, P. Mariani, D. Palano,
P. Paoli, P. Rossi and B. Valtancoli, J. Chem. Soc., Dalton Trans.,
2
001, 917–922.
3 J. Yoo, D. E. Reichert and M. J. Welch, J. Med. Chem., 2004, 47,
625–6637.
In conclusion, the facile synthesis of TE2A, superior kinetic
stability of the Cu–TE2A complex compared to that of
1
6
6
4
Cu–TETA and quantitative labelling with
Cu at low
14 I. M. Helps, D. Parker, J. Chapman and G. Ferguson, J. Chem.
Soc., Chem. Commun., 1988, 1094–1095.
temperature are expected to lead to the widespread use of
TE2A as a new chelator for various copper(II) radionuclides.
Furthermore, many new bifunctional chelators could be
derived based on the TE2A backbone and utilized to label
disease-specific peptides and antibodies. Easy access to TE2A
would also allow for the further structural modification of
various metal complexes and enable its application in
diverse research fields, such as optical imaging probes, MRI
reagents, and catalysis, in addition to medical imaging and
radiotherapy.
1
5 J. Chapman, G. Ferguson, J. F. Gallagher, M. C. Jennings and
D. Parker, J. Chem. Soc., Dalton Trans., 1992, 345–353.
6 I. M. Helps, D. Parker, J. R. Morphy and J. Chapman,
Tetrahedron, 1989, 45, 219–226.
1
1
7 M. Shokeen and C. J. Anderson, Acc. Chem. Res., 2009, 42, 832–841.
8 K. S. Woodin, K. J. Heroux, C. A. Boswell, E. H. Wong,
G. R. Weisman, W. Niu, S. A. Tomellini, C. J. Anderson,
L. N. Zakharov and A. L. Rheingold, Eur. J. Inorg. Chem.,
2005, 4829–4833.
1
1
9 K. J. Heroux, K. S. Woodin, D. J. Tranchemontagne, P. C.
B. Widger, E. Southwick, E. H. Wong, G. R. Weisman,
S. A. Tomellini, T. J. Wadas, C. J. Anderson, S. Kassel,
J. A. Golen and A. L. Rheingold, Dalton Trans., 2007, 2150–2162.
This work was supported by MEST/KOSEF (Nuclear R&D
Program, M2080600010808M060010810), a Korea Research
Foundation Grant funded by the Korean Government
20 J. D. Silversides, C. C. Allan and S. J. Archibald, Dalton Trans.,
007, 971–978.
2
2
1 T. J. Wadas, E. H. Wong, G. R. Weisman and C. J. Anderson,
Curr. Pharm. Des., 2007, 13, 3–16.
(
MOEHRD, Basic Research Promotion Fund) (KRF-
008-331-E00262), and the Brain Korea 21 Project in 2009.
2
2
2 L. A. Bass, M. Wang, M. J. Welch and C. J. Anderson,
Bioconjugate Chem., 2000, 11, 527–532.
6
The production of Cu was supported partially by the QURI
4
This journal is ꢀc The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 3517–3519 | 3519