Journal of the American Chemical Society
Page 6 of 8
enabling tools for bond disconnection via reactivity umpolung. Acc.
process that involves a tri- or tetra-coordinate gold(I)
intermediate with oxidizing agent. Computational studies for
the bond lengths and bond angles of tri-coordinate
(Phen)R3PAuNTf2 shows that the tri-coordinate accessibility
increases as trans influence of phosphine ligands decreases.
The oxidative addition to the asymmetric tri-coordinate
(Phen)R3PAu(I)NTf2 complexes with alkynyl hypervalent
iodine reagents was built. The reactivity profile of these gold(I)
complexes exhibits a good relationship to the Hammett
substituent parameter (ρ = 3.75, R2 = 0.934), in which the
gold(I) complexes bearing less σ-donating phosphine ligands
increase the rate of oxidative addition. The positive ρ indicated
a strong ligand effects for the oxidative addition. Different from
the common understanding that ligands with strong σ-donation
could increase the oxidative reactivity of gold(I) complexes by
increase the electron density on the gold center, this study
suggests that the weakened σ-donor ligands increase the
oxidative reactivity by promoting tri- or tetra-coordinate
accessibility of gold(I) complexes. It was also supported by a
facile oxidative addition of alkynyl hypervalent iodine reagent
to linear bis(pyridine)lgold(I) complex, in which the less σ-
donating pyridyl ligands increase the tri-coordinate
accessibility of gold(I) intermediate with the oxidizing agent.23
From a strategic standpoint, we anticipate that this process,
which employs weakened σ-donor ligands to enable the
oxidative addition to gold(I), would find widespread and
practical use in various disciplines of chemical science.
Chem. Res. 2018, 51, 3212. (e) Rodriguez, J.; Zeineddine, A.; Carrizo,
E. D. S.; Miqueu, K.; Saffon-Merceron, N.; Amgoune, A.; Bourissou,
D. Catalytic Au(I)/Au(III) arylation with the hemilabile MeDalphos
ligand: unusual selectivity for electronrich iodoarenes and efficient
application to indoles. Chem. Sci. 2019, 10, 7183.
(2) Bratsch, S. G.; Standard electrode potentials and temperature
coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data, 1989, 18,
1.
(3) (a) Schwerdtfeger, P.; Hermann, H. L.; Schmidbaur, H. Stability
of the gold(I)−phosphine bond. A comparison with other group 11
elements. Inorg. Chem. 2003, 42, 1334. (b) Carvajal, M. A.; Novoa, J.
J.; Alvarez, S. Choice of coordination number in d10 complexes of
group 11 metals. J. Am. Chem. Soc. 2004, 126, 1465.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(4) (a) Joost, M.; Zeineddine, A.; Estévez. L.; Mallet-Ladeira, S.;
Miqueu, K.; Amgoune, A.; Bourissou, D. Facile oxidative addition of
aryl iodides to gold(I) by ligand design: bending turns on reactivity. J.
Am. Chem. Soc. 2014, 136, 14654. (b) Joost, M.; Estévez, L.; Miqueu,
K.; Amgoune, A.; Bourissou, D. Oxidative addition of carbon–carbon
bonds to gold. Angew. Chem. Int. Ed. 2015, 54, 5236. (c) Joost, M.;
Amgoune, A.; Bourissou, D. Reactivity of gold complexes towards
elementary organometallic reactions. Angew. Chem. Int. Ed. 2015, 54,
15022. (d) Harper, M. J.; Arthur, C. J.; Crosby, J.; Emmett, E. J.;
Falconer, R. L.; Fensham-Smith, A. J.; Gates, P. J.; Leman, T.;
Mcgrady, J. E.; Bower, J. F.; Russell, C. A. Oxidative addition,
transmetalation, and reductive elimination at a 2,2’-bipyridyl-ligated
gold center. J. Am. Chem. Soc. 2018, 140, 4440. (e) Yang, Y.; Antoni,
P.; Zimmer, M.; Sekine, K.; Mulks, F.; Hu, L.; Zhang, L.; Rudolph, M.;
Rominger, F.; Hashmi, A. S. K. Dual gold/silver catalysis involving
alkynylgold(III) intermediates formed by oxidative addition and silver-
catalyzed C–H activation for the direct alkynylation of cyclopropenes.
Angew. Chem. Int. Ed. 2019, 58, 5129. (f) Navarro, M.; Toledo, A.;
Joost, M.; Amgoune, A.; Ladeira, S.; Bourissou, D. π Complexes of
P^P and P^N chelated gold(I). Chem. Commun. 2019, 55, 7974.
(5) Amatore, C.; Pfluger, F. Mechanism of oxidative addition of
palladium(0) with aromatic iodides in toluene, monitored at
ultramicroelectrodes. Organometallics 1990, 9, 2276.
ASSOCIATED CONTENT
Supporting Information
The Supporting Information is available free of charge on the ACS
Publications
website.
(6) Colburn, C. B.; Hill, W. E.; McAuliffe, C. A.; Parish, R. V. 31
P
N.M.R. study of tertiary phosphine complexes of gold(I). J. Chem.
Soc., Chem. Commun. 1979, 218.
Detailed experimental procedures and compound characterization
(PDF)
X-ray diffraction data of 1a, 1d, 1e (CIF)
(7) Fürstner, A.; Davies, P. Catalytic carbophilic activation: catalysis
by platinum and gold pi acids. Angew. Chem., Int. Ed. 2007, 46, 3410.
(8) (a) Crespo, O.; Gimeno, M. C.; Laguna, A.; Jones, P. G. Two-,
three- and four-coordinate gold(I) complexes of 1,2-
bis(diphenylphosphino)-1,2-dicarba-closo-dodecaborane. J. Chem.
Soc., Dalton. Trans. 1992, 1601. (b) Cinellu, M. A.; Minghetti, G.;
Cocco, F.; Stoccoro, S.; Zucca, A.; Manassero, M.; Arca, M. Synthesis
and properties of gold alkene complexes. Crystal structure of
[Au(bipyoxyl)(η2-CH2[double bond, length as m-dash]CHPh)](PF6)
and DFT calculations on the model cation [Au(bipy)(η2-CH2[double
bond, length as m-dash]CH2)]+. Dalton Trans. 2006, 5703.
(9) Joost, M.; Estevez, L.; Mallet-Ladeira, S.; Miqueu, K.;
Amgoune, A.; Bourissou, D. Enhanced π-backdonation from gold(I):
isolation of original carbonyl and carbene complexes. Angew. Chem.,
Int. Ed. 2014, 53, 14512.
(10) (a) Guenther, J.; Mallet-Ladeira, S.; Estevez, L.; Miqueu, K.;
Amgoune, A.; Bourissou, D. Activation of aryl halides at gold(I):
practical synthesis of (P,C) cyclometalated gold(III) complexes. J. Am.
Chem. Soc. 2014, 136, 1778. (b) Serra, J.; Whiteoak, C. J.; Acuna-
Pares, F.; Font, M.; Luis, J. M.; Lloret-Fillol, J.; Ribas, X. Oxidant-free
Au(I)-catalyzed halide exchange and Csp2–O bond forming reactions.
J. Am. Chem. Soc. 2015, 137, 13389. (c) Serra, J.; Parella, T.; Ribas, X.
Au(III)-aryl intermediates in oxidant-free C–N and C–O cross-
coupling catalysis. Chem. Sci., 2017, 8, 946.
AUTHOR INFORMATION
Corresponding Author
*E-mail: hashmi@hashmi.de.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
Y. Yang is grateful for a Ph.D. fellowship from the China
Scholarship Council (CSC) and gratefully acknowledge Richard J.
Mudd for helpful discussions. J. F. Wunsch thanks for the support
by the Hector Fellow Academy. The authors acknowledge the
support by the state of Baden-Württemberg through bwHPC.
REFERENCES
(1) (a) Levin, M. D.; Toste, F. D. Gold-catalyzed allylation of aryl
boronic acids: accessing cross-coupling reactivity with gold. Angew.
Chem. Int. Ed. 2014, 53, 6211. (b) Hopkinson, M. N.; Tlahuext-Aca,
A.; Glorius, F. Merging visible light photoredox and gold catalysis.
Acc. Chem. Res. 2016, 49, 2261. (c) Zeineddine, A.; Estévez, L.;
Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. Rational
development of catalytic Au(I)/Au(III) arylation involving mild
oxidative addition of aryl halides. Nat. Commun. 2017, 8, 565. (d) Hari,
D. P.; Caramenti, P.; Waser, J. Cyclic hypervalent iodine reagents:
(11) Gorin, D. J.; Toste, F. D. Relativistic effects in homogeneous
gold catalysis. Nature 2007, 446, 395.
(12) Sokolov, A. Y.; Sizova, O. V. Quantum-chemical study of trans
influence in gold(I) linear complexes. Russ. J. Gen. Chem. 2010, 80,
1223.
(13) Gimeno, M. C.; Laguna, A. Three- and four-coordinate gold(I)
complexes. Chem. Rev. 1997, 97, 511.
ACS Paragon Plus Environment