A R T I C L E S
Banerjee et al.
ping the distribution of the histidine residues on the protein
surface,9 and designing inhibitors.10 Upon a cursory examination
of the X-ray crystallographic structures of the enzymes, which
are potential targets of drug designing, we found several
enzymes containing the surface-exposed histidine residues within
10-15 Å of the active sites.11 Of these, carbonic anhydrase was
selected as a model system for testing our strategy because of
the following reasons: (1) the enzyme has been the target of
drug discovery over the last 40 years, for the treatment of a
variety of diseases, such as glaucoma, eplipetic seizure, high
altititude sickness, and recently for cancer,10a,12,14 (2) there are
14 different types of isozymes of human carbonic anhydrase,
and most of these isozymes have different distribution of the
surface-exposed histidine residues,11e,13 (3) several carbonic
anhydrase isozymes have been cloned, expressed, and purified
in bulk quantities, and their structural-functional properties have
been investigated in considerable detail,15 and (4) a variety of
sulfonamide and hydroxamate derivatives as well as other
inhibitors of carbonic anhydrases have been recognized, and
their binding affinities have been determined by the kinetic
method.10,14 A preliminary account of our strategy involving
the commercially available preparation of bovine carbonic
anhydrase (which contained a mixture of carbonic anhydrase
isozymes) and a few IDA-Cu2+ ligand sulfonamide inhibitors
has been recently presented.10b To derive quantitative conclu-
sions on the influence of attaching a tether group to benzene-
sulfonamide on the enzyme-inhibitor interaction, we designed
compound-1 (Figure 2) in the light of the structural coordinates
of hCA-II-4-fluorobenzenesulfonamide (FBS) complex (see
results) and performed the detailed kinetic and thermodynamic
studies.
Figure 2. Structure of compound-1. The active site-directed group,
benzenesulfonamide, and the histidine binding residue, IDA-Cu2+, are shown
to be connected via a triethylene glycol spacer.
(6) (a) Frey, W.; Schief, W. R., Jr.; Pack, D. W.; Chen, C.-T.; Chikotti, A.;
Stayton, P.; Vogel, V.; Arnold, F. H. Proc. Natl. Acad. Sci. U.S.A. 1996,
93, 4937-4941. (b) Pack, D. W.; Chen, G.; Maloney, K. M.; Chen, C. T.;
Arnold, F. H. J. Am. Chem. Soc. 1997, 119, 2479-2487.
Figure 3. Surface topology of human carbonic anhydrase-II with bound
FBS. The surface-exposed histidine residues, the active site Zn2+ (sur-
rounded by the histidine residues), and FBS are shown. Generated by the
software GRASP.17
(7) (a) Nakagawa, Y.; Yip, T. T.; Belew, M.; Porath, J. Anal. Biochem. 1988,
168, 75-81. (b) Lanmango, N. S.; Zhu, X.; Lindberg, I. Arch. Biochem.
Biophys. 1996, 330, 238-250. (c) Mrabet, N. T. Biochemistry 1992, 31,
2690-2702.
As will be shown in the subsequent sections, the binding
affinity of benzenesulfonamide is enhanced by about 40-fold
upon attachment of IDA-Cu2+ via the triethylene spacer
(compound-1). This quantitative conclusion has been derived
both by the steady-state kinetics of the enzyme inhibition data
and the direct measurement of enzyme-inhibitor binding
affinities. Our overall strategy toward the structure-based design
of isozyme-specific inhibitors and the role of the tether group
in stabilizing the ground states of the enzyme-inhibitor
complexes are discussed in the following sections.
(8) Berna, P. P.; Mrabet, N. T.; Van Beeumen, J.; Devreese, B.; Porath, J.;
Vijayalakshmi, M. A. Biochemistry 1997, 36, 6896-905.
(9) Fazal, M. A.; Roy, B. C.; Sun, S.; Mallik, S.; Rodgers, K. R. J. Am. Chem.
Soc. 2001, 123, 6283-6290.
(10) (a) Supuran, C. T.; Scozzafava, A.; Casini, A. Med. Res. ReV. 2003, 23,
146-189. (b) Roy, B. C.; Hegge, R.; Rosendahl, T.; Jia, X.; Lareau, R.;
Mallik, S.; Srivastava, D. K. J. Chem. Soc., Chem. Commun. 2003, 2328-
2329.
(11) (a) Oka, M.; Matsumoto, Y.; Sugiyama, S.; Tsuruta, N.; Matsuhima, M. J.
Med. Chem. 2000, 43, 2479-2483. (b) Phillips, R. S.; Demidkina, T. V.;
Faleev, N. G. Biochim. Biophys. Acta 2003, 1647, 167-172. (c) Pang, S.
S.; Guddat, L. W.; Duggleby, R. G. J. Biol. Chem. 2003, 278, 7639-7644.
(d) Qiu, W.; Campbell, R. L.; Gangloff, A.; Dupuis, P.; Boivin, R. P.;
Tremblay, M. R.; Poirier, D.; Lin, S. X. FASEB J. 2002, 16, 1829-1831.
(e) Stams, T.; Christianson, D. W. In The Carbonic Anhydrases: New
Horizons; Chegwidden, W. R., Carter, N. D., Edwards, Y. H., Eds.;
Birkhauser Verlag: Basel, 2000; pp 159-174. (f) Vihinen, P. P.; Pyrhonen,
S. O.; Kahari, V. M. Ann Med. 2003, 35, 66-78. (g) Meltzer, H. Y. J.
Clin. Psychiatry 1991, 52, 58-62.
(12) (a) Supuran, C. T. Expert Opin. InVest. Drugs 2003, 12, 283-287. (b)
Rafajova, M.; Zatovicova, M.; Kettmann, R.; Pastorek, J.; Pastorekova, S.
Int. J. Oncol. 2004, 24, 995-1004.
(13) Tureci, O.; Sahin, U.; Vollmar, E.; Siemer, S.; Gottert, E.; Seitz, G.;
Parkkila, A.-K.; Shah, G. N.; Grubb, J. H.; Pfreundschuh, M.; Sly, W. S.
Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 7608-7613.
(14) (a) Scozzafava, A.; Owa, T.; Mastrolorenzo, A.; Supuran, C. T. Curr. Med.
Chem. 2003, 10, 925-953. (b) Herker, U.; Pfeiffer, N. Curr. Opin.
Opthalmol. 2001, 12, 88-93. (c) Potter, C. P. S.; Harris, A. L. Br. J. Cancer
2003, 89, 2-7. (d) Mansoor, U. F.; Zhang, X.-R.; Blackburn, G. M In The
Carbonic Anhydrases: New Horizons; Chegwidden, W. R., Carter, N. D.,
Edwards, Y. H., Eds.; Birkhauser Verlag: Basel, 2000; pp 437-459.
(15) (a) Maren, T. H. Physiol. ReV. 1967, 47, 595-781. (b) Tashian, R. E. AdV.
Genet. 1992, 30, 321-356. (c) Sly, W. S.; Hu, P. Y. Annu. ReV. Biochem.
1995, 64, 375-401. (d) Tripp, B. C.; Smith, K.; Ferry, J. G. J. Biol. Chem.
2001, 276, 48615-48618. (e) Schwartz, G. J. J. Nephrol. 2002, 15, S61-
S64.
Results
The X-ray crystallographic structure of recombinant human
carbonic anhydrase-II (hCA-II) in the presence of FBS (pdb
file: 1IF4.pdb) has been known to atomic resolution.16 The
surface topology of the enzyme, its active site binding pocket
(containing the histidine-fenced Zn2+ and FBS), and the surface-
exposed histidine residues are shown in Figure 3.
Note that the N-terminal segment of the enzyme contains six
surface-exposed histidine residues, namely His-3, His-4, His-
10, His-15, His-17, and His-64. Of these, His-64 has been
demonstrated to mediate the proton transfer between exterior
solvent molecule and the zinc-bound water at the active site of
(16) Kim, C.-Y.; Christianson, D. W. PDB file name: 1IF4.pdb.
9
10876 J. AM. CHEM. SOC. VOL. 126, NO. 35, 2004