Page 5 of 7
Journal of the American Chemical Society
Enantioselective Diels-Alder Addition. J. Am. Chem. Soc. 2003,
125, 6388–6390.
Futatsugi, K.; Yamamoto, H. Oxazaborolidine-Derived Lewis
Acid Assisted Lewis Acid as a Moisture-Tolerant Catalyst for
Enantioselective Diels-Alder Reactions. Angew. Chem., Int. Ed.
2005, 44, 1484–1487.
ASSOCIATED CONTENT
Supporting Information
1
2
3
(9)
This material is available free of charge via the Internet at
4
5
6
7
8
9
(10)
Wang, Z.; Wong, Y. F.; Sun, J. Catalytic Asymmetric 1,6-
Conjugate Addition of Para-Quinone Methides: Formation of
All-Carbon Quaternary Stereocenters. Angew. Chem., Int. Ed.
2015, 54, 13711–13714.
Wong, Y. F.; Wang, Z.; Sun, J. Chiral Phosphoric Acid Catalyzed
Asymmetric Addition of Naphthols to Para-Quinone Methides.
Org. Biomol. Chem. 2016, 14, 5751–5754.
Li, W.; Xu, X.; Liu, Y.; Gao, H.; Cheng, Y.; Li, P.
Enantioselective Organocatalytic 1,6-Addition of Azlactones to
Para-Quinone Methides: An Access to Α,α-Disubstituted and
Β,β-Diaryl-α-Amino Acid Esters. Org. Lett. 2018, 20, 1142–
1145.
Wang, L. L.; Candito, D.; Dräger, G.; Herrmann, J.; Müller, R.;
Kirschning, A. Harnessing a P-Quinone Methide Intermediate in
the Biomimetic Total Synthesis of the Highly Active Antibiotic
20-Deoxy-Elansolid B1. Chem. - A Eur. J. 2017, 23, 5291–5298.
Nakashima, D.; Yamamoto, H. Design of Chiral N-Triflyl
Phosphoramide as a Strong Chiral Brønsted Acid and Its
Application to Asymmetric Diels-Alder Reaction. J. Am. Chem.
Soc. 2006, 128, 9626–9627.
Jiao, P.; Nakashima, D.; Yamamoto, H. Enantioselective 1,3-
Dipolar Cycloaddition of Nitrones with Ethyl Vinyl Ether: The
Difference between Brønsted and Lewis Acid Catalysis. Angew.
Chem., Int. Ed. 2008, 120, 2445–2447.
Rueping, M.; Uria, U.; Lin, M. Y.; Atodiresei, I. Chiral Organic
Contact Ion Pairs in Metal-Free Catalytic Asymmetric Allylic
Substitutions. J. Am. Chem. Soc. 2011, 133, 3732–3735.
Xie, Y.; List, B. Catalytic Asymmetric Intramolecular [4+2]
Cycloaddition of In Situ Generated Ortho-Quinone Methides.
Angew. Chem., Int. Ed. 2017, 56, 4936–4940.
Akiyama, T.; Morita, H.; Itoh, J.; Fuchibe, K. Chiral Brønsted
Acid Catalyzed Enantioselective Hydrophosphonylation of
Imines: Asymmetric Synthesis of α-Amino Phosphonates. Org.
Lett. 2005, 7, 2583–2585.
Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Enantioselective
Mannich-Type Reaction Catalyzed by a Chiral Brønsted Acid.
Angew. Chemie Int. Ed. 2004, 43, 1566–1568.
Zhou, F.; Yamamoto, H. A Powerful Chiral Phosphoric Acid
Catalyst for Enantioselective Mukaiyama – Mannich Reactions.
Angew. Chemie Int. Ed. 2016, 55, 8970–8974.
Lebée, C.; Kataja, A. O.; Blanchard, F.; Masson, G. Formal
Asymmetric Organocatalytic [3+2] Cyclization between
Enecarbamates and 3-Indolylmethanols: Rapid Access to 3-
Aminocyclopenta[b]indoles. Chem. - A Eur. J. 2015, 21, 8399–
8402.
See the Supporting Information for complete experimental
details.
Merad, J.; Lalli, C.; Bernadat, G.; Maury, J.; Masson, G.
Enantioselective Brønsted Acid Catalysis as a Tool for the
Synthesis of Natural Products and Pharmaceuticals. Chem. - A
Eur. J. 2018, 24, 3925–3943.
Champagne, P. A.; Houk, K. N. Origins of Selectivity and
General Model for Chiral Phosphoric Acid-Catalyzed Oxetane
Desymmetrizations. J. Am. Chem. Soc. 2016, 138, 12356–12359.
Reid, J. P.; Simón, L.; Goodman, J. M. A Practical Guide for
Predicting the Stereochemistry of Bifunctional Phosphoric Acid
Catalyzed Reactions of Imines. Acc. Chem. Res. 2016, 49, 1029–
1041.
Dong, N.; Zhang, Z. P.; Xue, X. S.; Li, X.; Cheng, J. P.
Phosphoric Acid Catalyzed Asymmetric 1,6-Conjugate Addition
of Thioacetic Acid to Para-Quinone Methides. Angew. Chemie -
Int. Ed. 2016, 55, 1460–1464.
Experimental procedures, computational data, and
characterization data for new compounds (PDF)
(11)
(12)
Video clip from the parallel tempering (PT) simulation of
TS-1 and CPA F (.avi)
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
(13)
(14)
(15)
Notes
We declare no competing financial interests.
ACKNOWLEDGMENT
We thank the National Institutes of Health (NIH) (R35 GM-
118173 to JAP) and Boston University (BU) for financial support.
SES and RAE acknowledge the NIH for support (R01 GM-
078240). KDR is supported by a postdoctoral fellowship (PF-16-
235-01-CDD) from the American Cancer Society. NMR (CHE-
0619339) and MS (CHE-0443618) facilities at BU are supported
by the National Science Foundation (NSF). We also thank the NSF
(CHE-1665367 to DFC) for funding. Work at the BU-CMD is
supported by the NIH (R24 GM-111625). We acknowledge Prof.
Richard Johnson and Dr. Sharon Song (UNH) for their
computational investigations in the synthesis of (±)–1. We also
thank Prof. Benjamin List (MPI) for kindly providing catalysts for
our initial screen.
(16)
(17)
(18)
(19)
(20)
(21)
REFERENCES
(1)
Xu, Y. J.; Cao, S. G.; Wu, X. H.; Lai, Y. H.; Tan, B. H. K.;
Pereira, J. T.; Goh, S. H.; Venkatraman, G.; Harrison, L. J.; Sim,
K. Y. Griffipavixanthone, a Novel Cytotoxic Bixanthone from
Garcinia Griffithii and G. Pavifolia. Tetrahedron Lett. 1998, 39,
9103–9106.
Shi, J. M.; Huang, H. J.; Qiu, S. X.; Feng, S. X.; Li, X. E.
Griffipavixanthone from Garcinia Oblongifolia Champ Induces
Cell Apoptosis in Human Non-Small-Cell Lung Cancer H520
Cells in Vitro. Molecules 2014, 19, 1422–1431.
Ding, Z.; Lao, Y.; Zhang, H.; Fu, W.; Zhu, L. Griffipavixanthone,
a Dimeric Xanthone Extracted from Edible Plants, Inhibits Tumor
Metastasis and Proliferation via Downregulation of the RAF
Pathway in Esophageal Cancer. Oncotarget 2015, 7, 1826–1837.
Reichl, K. D.; Smith, M. J.; Song, M. K.; Johnson, R. P.; Porco,
J. A., Jr. Biomimetic Total Synthesis of (±)-Griffipavixanthone
via a Cationic Cycloaddition-Cyclization Cascade. J. Am. Chem.
Soc. 2017, 139, 14053–14056.
Brak, K.; Jacobsen, E. N. Asymmetric Ion-Pairing Catalysis.
Angew. Chem., Int. Ed. 2013, 52, 534–561.
Held, F. E.; Grau, D.; Tsogoeva, S. B. Enantioselective
Cycloaddition Reactions Catalyzed by BINOL-Derived
Phosphoric Acids and N-Triflyl Phosphoramides: Recent
Advances. Molecules 2015, 20, 16103–16126.
Maji, R.; Mallojjala, S. C.; Wheeler, S. E. Chiral Phosphoric Acid
Catalysis: From Numbers to Insights. Chem. Soc. Rev. 2018, 47,
1142–1158.
Ryu, D. H.; Corey, E. J. Triflimide Activation of a Chiral
Oxazaborolidine Leads to a More General Catalytic System for
(22)
(23)
(2)
(3)
(4)
(24)
(25)
(5)
(6)
(26)
(27)
(28)
Reid, J. P.; Goodman, J. M. Selecting Chiral BINOL-Derived
Phosphoric Acid Catalysts: General Model To Identify Steric
Features Essential for Enantioselectivity. Chem. - A Eur. J. 2017,
23, 14248–14260.
(7)
(8)
For
a recent example of enhanced-sampling (molecular
dynamics) computational analysis of a peptide catalyst, see: Yan,
X. C.; Metrano, A. J.; Robertson, M. J.; Abascal, N. C.; Tirado-
5
ACS Paragon Plus Environment