R. Kleerebezem et al. / FEMS Microbiology Ecology 29 (1999) 273^282
281
[
[
[
11] Schink, B. (1992) Syntrophism among prokaryotes. In: The
Prokaryotes (Balows, A., Tr u« per, H.G., Dworkin, M., Hard-
er, W. and Schleifer, K.H., Eds.), Vol. I, pp. 276^299. Spring-
er-Verlag, New York.
12] Hickey, R.F. and Switzenbaum, M.S. (1991) Thermodynamics
of volatile fatty acid accumulation in anaerobic digesters sub-
ject to increases in hydraulic and organic loading. Res. J.
WPCF 63, 141^144.
13] Dwyer, D.F., Weeg-Aerssens, E., Shelton, D.R. and Tiedje,
J.M. (1988) Bioenergetic conditions of butyrate metabolism by
a syntrophic anaerobic bacterium in coculture with hydrogen-
oxidizing methanogenic and sul¢dogenic bacteria. Appl. En-
viron. Microbiol. 54, 1354^1359.
14] Seitz, H.J., Schink, B. and Conrad, R. (1988) Thermodynam-
ics of hydrogen metabolism in methanogenic cocultures de-
grading ethanol or lactate. FEMS Microbiol. Lett. 55, 119^
ing from a di¡erent non-aromatic intermediate. The
fact that we worked with mixed cultures furthermore
keeps the question open whether one or more organ-
isms were involved in the conversions observed.
Acknowledgements
This project was supported through IOP Milieu-
biotechnologie (Innovative Research Program Envi-
ronmental Biotechnology, The Netherlands). R.K.
wishes to thank Alfons J.M. Stams for critical review
of the manuscript.
[
[
124.
15] Warikoo, V., McInerney, M.J., Robinson, J.A. and Su£ita,
J.M. (1996) Interspecies acetate transfer in£uences the extent
of anaerobic benzoate degradation by syntrophic consortia.
Appl. Environ. Microbiol. 62, 26^32.
References
[
1] Heijnen, J.J., van Loosdrecht, M.C.M. and Tijhuis, L. (1992)
A black box mathematical model to calculate auto- and het-
erotrophic biomass yields based on Gibbs energy dissipation.
Biotechnol. Bioeng. 40, 1139^1154.
[16] Wallrabenstein, C. and Schink, B. (1994) Evidence of reversed
electron transport in syntrophic butyrate or benzoate oxida-
tion by Syntrophomonas wolfei and Syntrophus buswellii. Arch.
Microbiol. 162, 136^142.
[17] Stams, A.J.M. (1994) Metabolic interactions between anaero-
bic bacteria in methanogenic environments. Antonie van
Leeuwenhoek 66, 271^294.
[
2] McCarty, P.L. (1971) Energetics and bacterial growth. In:
Organic Compounds in Aquatic Environments (Faust, S.D.
and Hunter, J.V., Eds.), pp. 495^512. Marcel Dekker, New
York.
[
[
[
[
3] Stouthamer, A.H. (1979) The search for correlation between
theoretical and experimental growth yields. Int. Rev. Biochem.
[18] Thauer, R.K. and Morris, J.G. (1984) Metabolism of chemo-
trophic anaerobes: old views and new aspects. In: The Mi-
crobe 1984, Part II: Prokaryotes and Eukaryotes (Kelly, D.P.
and Carr, N.G., Eds.), pp. 123^168. Cambridge University
Press, Cambridge.
[19] Kleerebezem, R., Hulsho¡ Pol, L.W. and Lettinga, G. (1999)
Anaerobic degradation of phthalate isomers by methanogenic
consortia. Appl. Environ. Microbiol. 65, 1152^1160.
[20] Kleerebezem, R., Hulsho¡ Pol, L.W. and Lettinga, G. (1999)
The role of benzoate in anaerobic degradation of terephtha-
late. Appl. Environ. Microbiol. 65, 1161^1167.
[21] Nozawa, T. and Maruyama, Y. (1988) Denitri¢cation by a
soil bacterium with phthalate and aromatic compounds as
substrates. J. Bacteriol. 170, 2501^2505.
[22] Nozawa, T. and Maruyama, Y. (1988) Anaerobic metabolism
of phthalate and other aromatic compounds by a denitrying
bacterium. J. Bacteriol. 170, 5778^5784.
2
1, 1^47.
4] Smith, D.P. and McCarty, P.L. (1989) Reduced product for-
mation following perturbation of ethanol- and propionate-fed
methanogenic CSTRs. Biotechnol. Bioeng. 34, 885^895.
5] Smith, D.P. and McCarty, P.L. (1989) Energetic and rate
e¡ects on methanogenesis of ethanol and propionate in per-
turbed CSTRs. Biotechnol. Bioeng. 34, 39^54.
6] Schink, B., Brune, A. and Schnell, S. (1992) Anaerobic deg-
radation of aromatic compounds. In: Microbial Degradation
of Natural Products (Winkelmann, G., Ed.), pp. 219^242,
VCH, Weinheim.
[
[
7] Wu, M.W. and Hickey, R.F. (1996) n-Propanol production
during ethanol degradation using anaerobic granules. Water
Res. 30, 1686^1694.
8] Seitz, H.J., Schink, B. and Pfennig, N. (1990) Energetics of
syntrophic ethanol oxidation in de¢ned chemostat cocultures;
energy requirements for H2 production and H2 oxidation (1).
Arch. Microbiol. 155, 82^88.
[23] Thauer, R.K., Jungermann, K. and Decker, K. (1977) Energy
conservation in chemotrophic anaerobic bacteria. Bacteriol.
Rev. 41, 100^179.
[
9] Seitz, H.J., Schink, B. and Pfennig, N. (1990) Energetics of
syntrophic ethanol oxidation in de¢ned chemostat cocultures;
energy sharing in biomass production (2). Arch. Microbiol.
[24] Dimroth, K. (1983) Thermochemische Daten organischer Ver-
bindungen. In: D'ans-Lax, Taschenbuch f u« r Chemiker und
Physiker, Vol. 2, pp. 997^1038 Springer-Verlag, Berlin.
[25] Conrad, R. and Wetter, B. (1990) In£uence of temperature
on energetics of hydrogen metabolism in homoacetogenic,
methanogenic, and other bacteria. Arch. Microbiol. 155, 94^
98.
1
55, 89^93.
[
10] Westerho¡, H.V., Lolkema, J.S., Otto, R. and Hellingwerf,
K.J. (1982) Thermodynamics of growth; non-equilibrium
thermodynamics of bacterial growth, the phenomenological
and the mosaic approach. Biochim. Biophys. Acta 683, 181^
[26] Hickey, R.F. and Switzenbaum, M.S. (1991) The response and
utility of hydrogen and carbon monoxide as process indicators
2
20.