14 M. R. Kessler and S. R. White, Cure kinetics of ring-opening
metathesis polymerization of dicyclopentadiene, J. Polym. Sci., Part
A: Polym. Chem., 2002, 40, 2373–2383.
be prematurely excluded as a possibility when considering
a feasible healing monomer/catalyst combination.
15 G. E. Larin, M. R. Kessler, N. Bernklau and J. C. DiCesare,
Rheokinetics of ring-opening metathesis polymerization of
norbornene based monomers intended for self-healing applications,
Polym. Eng. Sci., 2006, 46, 1804–1811.
16 T. C. Mauldin and M. R. Kessler, Latent catalytic systems for ring-
opening metathesis-based thermosets, J. Therm. Anal. Calorim.,
2009, 96, 705–713.
17 M. R. Kessler and S. R. White, Self-activated healing of delamination
damage in woven composites, Composites, Part A, 2001, 32, 683–699.
18 S. H. Cho, H. M. Andersson, S. R. White, N. R. Sottos and
P. V. Braun, Polydimethylsiloxane-based self-healing materials,
Adv. Mater., 2006, 18(8), 997–1000.
19 Y. C. Yuan, M. Z. Rong, M. Q. Zhang, J. Chen, G. C. Yang and
X. M. Li, Self-healing polymeric materials using epoxy/mercaptan
as the healant, Macromolecules, 2008, 41(14), 5197–5202.
20 M. M. Caruso, B. J. Blaiszik, S. R. White, N. R. Sottos and
J. S. Moore, Full recovery of fracture toughness using a nontoxic
solvent-based self-healing system, Adv. Funct. Mater., 2008, 18,
1898–1904.
21 X. Sheng, T. C. Mauldin and M. R. Kessler, J. Polym. Sci., Part A:
Polym. Chem., 2010, submitted.
22 J. D. Rule, E. N. Brown, N. R. Sottos, S. R. White and J. S. Moore,
Wax-protected catalyst microspheres for efficient self-healing
materials, Adv. Mater., 2005, 17, 205–208.
23 X. Liu, J. K. Lee, S. H. Yoon and M. R. Kessler, Characterization of
diene monomers as healing agents for autonomic damage repair,
J. Appl. Polym. Sci., 2006, 101, 1266–1272.
Conclusion
In this paper, a model was developed using the concept of
Hansen parameters in order to make predictions regarding the
dissolution of a solid catalyst in liquid monomers for self-healing
applications. More specifically, we developed our model in
reference to the dissolution of Grubbs’ catalyst in a library of
ROMP-active monomers, which are often used as a catalyst/
healing monomer combination in other self-healing works.
Hansen parameters were calculated for a small library of nor-
bornenyl-based monomers, which are generally reactive via the
ROMP reaction. The Grubbs’ catalyst was found to have two
sets of Hansen parameters, and blends of healing monomers
created to match these parameters were found to dissolve the
catalyst rapidly. However, the model is limited in its ability to
predict and compare dissolution rates of liquids with significantly
different viscosities. While our model was developed for
a ROMP-based self-healing system, we believe this Hansen
parameter technique is fundamental and versatile enough to be
applied to other types of self-healing chemistries.
24 J. K. Lee, X. Liu, S. H. Yoon and M. R. Kessler, Thermal analysis of
ring-opening metathesis polymerized healing agents, J. Polym. Sci.,
Part B: Polym. Phys., 2007, 45, 1771–1780.
25 X. Liu, X. Sheng, J. K. Lee, M. R. Kessler and J. S. Kim, Rheokinetic
evaluation of self-healing agents polymerized by Grubbs’ catalyst
embedded in various thermosetting resins, Compos. Sci. Technol.,
2009, 69, 2102–2107.
26 X. Liu, X. Sheng, M. R. Kessler and J. K. Lee, Isothermal cure
characterization of ROMP healing agents for autonomic damage
repair: the glass transition temperature and conversion, J. Therm.
Anal. Calorim., 2007, 89, 453–457.
Acknowledgements
This work was supported by The American Chemical Society
Petroleum Research Fund (ACS PRF# 47700-AC7). The
authors gratefully acknowledge Dr Xia Sheng, Dr Wonje Jeong,
and Dr Malika Jeffries-EL for helpful discussions.
References
27 X. Liu, X. Sheng, J. K. Lee and M. R. Kessler, Synthesis and
characterization of melamine–urea–formaldehyde microcapsules
containing ENB-based self-healing agents, Macromol. Mater. Eng.,
2009, 294, 389–395.
1 M. R. Kessler, Self-healing: a new paradigm in materials design, Proc.
Inst. Mech. Eng., Part G, 2007, 221(4), 479–495.
2 R. P. Wool, Self-healing materials: a review, Soft Matter, 2008, 4,
400–418.
28 A. S. Jones, J. D. Rule, J. S. Moore, S. R. White and N. R. Sottos,
Catalyst morphology and dissolution kinetics of self-healing
polymers, Chem. Mater., 2006, 18, 1312–1317.
29 T. C. Mauldin, J. D. Rule, N. R. Sottos, S. R. White and J. S. Moore,
Self-healing kinetics and the stereoisomers of dicyclopentadiene,
J.R. Soc., Interface, 2007, 4, 389–393.
30 J. Hildebrand and R. L. Scott, The Solubility of Nonelectrolytes,
Reinhold, New York, 3rd edn, 1950.
31 P. V. Bonnesen, C. L. Puckett, R. V. Honeychuck and W. H. Hersh,
Catalysis of Diels–Alder reactions by low oxidation state transition-
metal Lewis acids: fact and fiction, J. Am. Chem. Soc., 1989, 111,
6070–6081.
3 S. D. Bergman and F. Wudl, Mendable polymers, J. Mater. Chem.,
2008, 18, 41–62.
4 S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler,
S. R. Sriram, E. N. Brown and S. Viswanathan, Autonomic healing of
polymer composites, Nature, 2001, 409, 794–797.
5 M. R. Kessler, N. R. Sottos and S. R. White, Self-healing structural
composite materials, Composites, Part A, 2003, 34, 743–753.
6 K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore and S. R. White,
Self-healing materials with microvascular networks, Nat. Mater.,
2007, 6, 581–585.
7 K. S. Toohey, C. Hansen, N. R. Sottos, J. A. Lewis and S. R. White,
Delivery of two-part self-healing chemistry via microvascular
networks, Adv. Funct. Mater., 2009, 19, 1399–1405.
8 E. L. Dias, S. T. Nguyen and R. H. Grubbs, Well-defined ruthenium
olefin metathesis catalysts: mechanism and activity, J. Am. Chem.
Soc., 1997, 119, 3887–3897.
32 P. K. Freeman, V. N. Mallikarjuna Rao, D. E. George and
G. L. Fenwick, The reactions of exo- and endo-5-
chloromethylnorbornene with sodium, J. Org. Chem., 1967, 32,
3958–3963.
33 S. J. Dolman, K. C. Hultzsch, F. Pezet, X. Teng, A. H. Hoveyda and
R. R. Schrock, Supported chiral Mo-based complexes as efficient
catalysts for enantioselective olefin metathesis, J. Am. Chem. Soc.,
2004, 126, 10945–10953.
34 I. S. Ponticello, The preparation of a-substituted acrylic esters,
J. Polym. Sci., Polym. Chem. Ed., 1979, 17, 3509–3518.
35 S. Oh, J.-K. Lee, P. Theato and K. Char, Nanoporous thin films based
on polylactide-grafted norbornene copolymers, Chem. Mater., 2008,
20, 6974–6984.
9 T. M. Trnka and R. H. Grubbs, The development of L2X2Ru]CHR
olefin metathesis catalysts: an organometallic success story, Acc.
Chem. Res., 2001, 34, 18–29.
10 C. W. Bielawski and R. H. Grubbs, Living ring-opening metathesis
polymerization, Prog. Polym. Sci., 2007, 32, 1–29.
11 E. Kirkby, V. Michaud, J. A. Manson, J. D. Rule, N. R. Sottos and
S. R. White, Embedded shape-memory allow wires for improved
performance of self-healing polymers, Adv. Funct. Mater., 2008, 18,
2253–2260.
36 P. Beslin, D. Lagain, J. Vialle and C. Minot, Preparation of
a-unsaturated acyclic thioketones—regioselective dimerization of
4H-1,3-dithiin, Tetrahedron Lett., 1981, 37, 3839–3845.
37 W. M. Lauer and M. A. Spielman, Synthesis of a,b-unsaturated
ethers, J. Am. Chem. Soc., 1931, 53, 1533–1536.
12 X. Sheng, J. K. Lee and M. R. Kessler, The influence of cross-link
density on the properties of ROMP thermosets, Polymer, 2009, 50,
1264–1269.
13 G. O. Wilson, J. S. Moore, S. R. White, N. R. Sottos and
H. M. Andersson, Adv. Funct. Mater., 2008, 18, 44–52.
This journal is ª The Royal Society of Chemistry 2010
J. Mater. Chem., 2010, 20, 4198–4206 | 4205