Communication
ChemComm
Notes and references
1 (a) E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem., 2014,
57, 10257–10274; (b) V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman
and P. Sharma, RSC Adv., 2015, 5, 15233–15266; (c) N. Boens, V. Leen
and W. Dehaen, Chem. Soc. Rev., 2012, 41, 1130–1172.
2 (a) X. Jiang, Topics in Current Chemistry, in Sulfur Chemistry,
Springer, Berlin, 2018; (b) M. J. Bodner, R. M. Phelan,
M. F. Freeman, R. Li and C. A. Townsend, J. Am. Chem. Soc., 2010,
132, 12–13; (c) G. Balaji and S. Valiyaveettil, Org. Lett., 2009, 11,
3358–3361.
3 For selected examples, see: (a) Y. Zhou, L. Zhou, L. T. Jesikiewicz,
P. Liu and S. L. Buchwald, J. Am. Chem. Soc., 2020, 142, 9908–9914;
(b) K. Muralirajan, R. Kancherla and M. Rueping, Angew. Chem., Int.
Ed., 2018, 57, 14787–14791; (c) B. Prabagar, R. K. Mallick, R. Prasad,
V. Gandon and A. K. Sahoo, Angew. Chem., Int. Ed., 2019, 58,
2365–2370.
4 (a) P. Thamyongkit, A. D. Bhise, M. Taniguchi and J. S. Lindsey,
J. Org. Chem., 2006, 71, 903–910; (b) M. Kakushima and R. Frenette,
J. Org. Chem., 1984, 49, 2025–2027; (c) W. Xu, Y.-Y. Hei, J.-L. Song,
X.-C. Zhan, X.-G. Zhang and C.-L. Deng, Synthesis, 2019,
545–551.
5 (a) S. Dutta, R. K. Mallick, R. Prasad, V. Gandon and A. K. Sahoo,
Angew. Chem., Int. Ed., 2019, 58, 2289–2294; (b) B. Yuan, Y. Jiang,
Z. Qi, X. Guan, T. Wang and R. Yan, Adv. Synth. Catal., 2019, 361,
5112–5117.
6 (a) B. Jiang, H. Tian, Z.-G. Huang and M. Xu, Org. Lett., 2008, 10,
2737–2740; (b) M. J. Bodner, R. M. Phelan and C. A. Townsend,
Org. Lett., 2009, 11, 3606–3609.
Scheme 5 Control experiments and proposed mechanism.
7 (a) R. Kuwano, M. Kashiwabara, M. Ohsumi and H. Kusano, J. Am.
Chem. Soc., 2008, 130, 808–809; (b) D.-S. Wang, Z.-S. Ye, Q.-A. Chen,
Y.-G. Zhou, C.-B. Yu, H.-J. Fan and Y. Duan, J. Am. Chem. Soc., 2011,
133, 8866–8869; (c) E. G. Occhiato, C. Prandi, A. Ferrali and
A. Guarna, J. Org. Chem., 2005, 70, 4542–4545.
(HNO) and formaldehyde (HCHO) could be generated via the
Nef process in CH3NO2 under acidic conditions. On the other
hand, N-thiosuccinimides were firstly activated by AlCl3 to
generate sulfenium cation A,17 which could induce the intra-
molecular cyclization of homopropargylic tosylamide 1 to form
pyrroline 4. In the MeCN solvent, 3-thiolated pyrroline 4 was
stable enough and could be isolated as it was; however, in the
CH3NO2 solvent, the pyrroline framework would be aromatized
to the pyrrole ring by the oxidation of HNO.
¨
8 (a) J. E. Backvall, Modern Oxidation Methods, 2nd, Wiley-VCH,
Weinhiem, 2010; (b) L. L. Hegedus and R. W. McCabe, Catalyst
Poisoning, Marcel Dekker, New York, 1984; (c) D. A. Evans,
S. J. Miller, T. Lectka and P. Matt, J. Am. Chem. Soc., 1999, 121,
7559–7573.
9 (a) Y. Chen, C.-H. Cho and R. C. Larock, Org. Lett., 2009, 11, 173–176;
(b) Y. Liang, J. Ji, X. Zhang, Q. Jiang, J. Luo and X. Zhao, Angew.
Chem., Int. Ed., 2020, 59, 4959–4964.
10 (a) J. Liu, C. Zhang, Z. Zhang, X. Wen, X. Dou, J. Wei, X. Qiu, S. Song
and N. Jiao, Science, 2020, 367, 281–285; (b) D. H. Dethe,
M. Shukla and B. D. Dherange, Org. Lett., 2020, 22, 5778–5782;
(c) J. Zhang, J. Jiang, Y. Li and X. Wan, J. Org. Chem., 2013, 78,
11366–11372.
11 (a) W. E. Noland, Chem. Rev., 1955, 55, 137–155; (b) H. W. Pinnick,
Org. React., 1990, 38, 655–792.
12 (a) W.-C. Gao, J. Tian, Y.-Z. Shang and X. Jiang, Chem. Sci., 2020, 11,
3903–3908; (b) W.-C. Gao, Y.-Z. Shang, H.-H. Chang, X. Li, W.-L. Wei,
X.-Z. Yu and R. Zhou, Org. Lett., 2019, 21, 6021–6024; (c) W.-C. Gao,
Y.-F. Cheng, H.-H. Chang, X. Li, W.-L. Wei and P. Yang, J. Org.
Chem., 2019, 84, 4312–4317.
In summary, we have developed AlCl3-subcatalysed electrophi-
lic thiolation/cyclization of homopropargylic tosylamides for the
synthesis of 3-thiolated pyrroles and pyrrolines, which were
selectively produced by the use of nitromethane or acetonitrile
as the solvent. This protocol featured simple and mild reaction
conditions, a broad substrate scope, good regioselectivity and
controllable products. More importantly, 3-thiolated pyrroles were
applied to the synthesis of organo-optoelectronic benzothienopyr-
roles and bisthiolated BODIPY, providing new avenues for the
preparation of S-containing material molecules. Efforts to exploit
this strategy for other applications are underway.
This work was supported by the National Natural Science
Foundation of China (No. 21901179), the Key R&D Program of
Shanxi Province (International cooperation) (No. 201803D421093),
the Natural Science Foundation of Shanxi Province (No.
201901D211052), the Scientific Activities of Selected Returned Over-
seas Professionals of Shanxi Province (No. 20200002) and the
Research Project of Shanxi Scholarship Council (No. HGKY2019029
and 2020-053).
13 For details, see the ESI†.
14 (a) T. Qi, Y. Guo, Y. Liu, H. Xi, H. Zhang, X. Gao, Y. Liu, K. Lu, C. Du,
G. Yu and D. Zhu, Chem. Commun., 2008, 6227–6229; (b) J. Zhou,
X. Yin, Z. Dong, A. Ali, Z. Song, N. Shrestha, S. S. Bista, Q. Bao,
R. J. Ellingson, Y. Yan and W. Tang, Angew. Chem., Int. Ed., 2019, 58,
13717–13721.
15 (a) P. Costa, D. Sandrin and J. C. Scaiano, Nat. Catal., 2020, 3,
427–437; (b) R. Wang, X. Gu, Q. Li, J. Gao, B. Shi, G. Xu, T. Zhu,
H. Tian and C. Zhao, J. Am. Chem. Soc., 2020, 142, 15084–15090;
(c) A. Stafford, D. Ahn, E. K. Raulerson, K.-Y. Chung, K. Sun,
D. M. Cadena, E. M. Forrister, S. R. Yost, S. T. Roberts and
Z. A. Page, J. Am. Chem. Soc., 2020, 142, 14733–14742; (d) X. Miao,
W. Hu, T. He, H. Tao, Q. Wang, R. Chen, L. Jin, H. Zhao, X. Lu,
Q. Fan and W. Huang, Chem. Sci., 2019, 10, 3096–3102.
16 H. Lu, J. Mack, Y. Yang and Z. Shen, Chem. Soc. Rev., 2014, 43,
4778–4823.
Conflicts of interest
17 (a) E. Ramesh, T. Guntreddi and A. K. Sahoo, Eur. J. Org. Chem.,
2017, 4405–4413; (b) K. Yuan, Y. Zhao, H. Chang, J. Tian and W. Gao,
Chin. J. Org. Chem., 2020, 40, 2607–2625.
There are no conflicts to declare.
1946 | Chem. Commun., 2021, 57, 1943À1946
This journal is The Royal Society of Chemistry 2021