Communication
ChemComm
(e) B. Adhikari, A. Shah and H.-B. Kraatz, J. Mater. Chem. B, 2014,
2, 4802; ( f ) G. M. Peters, L. P. Skala, T. N. Plank, B. J. Hyman,
G. N. M. Reddy, A. Marsh, S. P. Brown and J. T. Davis, J. Am. Chem.
Soc., 2014, 136, 12596; (g) M. C. Chen, B. J. Cafferty, I. Mamajanov,
comparatively low CGC value of the 1 : 2 PV : OA gel (Table S1,
ESI†). Due to the lower solubility of the 1 : 2 PV : OA gelator, upon
agitation, its entangled fibrous networks probably have collapsed/
broken, which could not ‘heal’ to revert back to the native state
(Fig. S12, ESI†). This fact may account for the brittle nature of the
1 : 2 PV : OA gel despite the presence of CO–NH–CO groups at the
surface of the fibers. In contrast, several reversible H-bonding
interactions among the CO–NH–CO groups at the surface of the
vesicles, which are quite soluble in water, presumably regulate the
thixotropic behavior of the 1 : 1 PV : OA gel (Fig. 1d).
´
I. Gallego, J. Khanam, R. Krishnamurthy and N. V. Hud, J. Am. Chem.
Soc., 2014, 136, 5640; (h) Y. Zhang, Z. Yang, F. Yuan, H. Gu, P. Gao
and B. Xu, J. Am. Chem. Soc., 2004, 126, 15028.
4 (a) S. J. George, A. Ajayaghosh, P. Jonkheijm, A. P. H. J. Schenning and
E. W. Meijer, Angew. Chem., Int. Ed., 2004, 43, 3422; (b) E. W. Meijer and
A. P. H. J. Schenning, Chem. Commun., 2005, 3245; (c) F. J. M. Hoeben,
P. Jonkheijm, E. W. Meijer and A. P. H. J. Schenning, Chem. Rev., 2005,
105, 1491; (d) S. Srinivasan, V. K. Praveen, R. Philip and A. Ajayaghosh,
Angew. Chem., Int. Ed., 2008, 47, 5750; (e) S. Bhattacharya and S. K.
Samanta, Chem. – Eur. J., 2012, 18, 16632; ( f ) S. K. Samanta, A. Pal and
S. Bhattacharya, Langmuir, 2009, 25, 8567; (g) S. K. Samanta and
S. Bhattacharya, J. Mater. Chem., 2012, 22, 25277; (h) S. Bhattacharjee,
S. K. Samanta, P. Moitra, K. Pramoda, R. Kumar, S. Bhattacharya and
C. N. R. Rao, Chem. – Eur. J., 2015, DOI: 10.1002/chem.201405522;
(i) F. J. M. Hoeben, A. P. H. J. Schenning and E. W. Meijer,
ChemPhysChem, 2005, 6, 2337; ( j) F. J. M. Hoeben, M. Wolffs,
The thixotropic nature of the 1 : 1 PV : OA gel enables it to be
injected through a narrow needle of a syringe by applying an
amiable force to fabricate different alphabetical letters (inset in
Fig. 5a).6i The injected material turned into the gel state almost
instantly, which is in accord with the hysteresis loop test data.
In summary, a synergistic combination of electrostatic, comple-
mentary H-bonding and p–p stacking interactions led to the
formation of a robust hydrogel network. Detailed investigations
revealed the formation of vesicular aggregates from the 1 : 1 and
1 : 2 PV : OA systems, which fused into cluster-type and fibrous
aggregates, respectively, upon increasing the concentration of the
two-component gelator complexes, resulting in the gel formation.
The stoichiometry of the PV : OA system was found to be crucial for
the macroscopic thixotropic behavior. The optimum solubility and
stability of the vesicles of the 1 : 1 PV : OA gelators in water allows
fusion of the former in a reversible fashion through complementary
H-bonding interactions more effectively, which is manifested in its
thixotropic behavior. This property makes the 1 : 1 PV : OA hydrogel
injectable, further adding to its practical value. In contrast, the
fibers of the 1 : 2 PV : OA gelators being less soluble in water tend to
phase separate upon agitation, causing damage to the existing gel
and thus fail to show injectable behavior. Furthermore, the OA unit
of the hydrogel can recognize its complementary melamine by
rapid disruption of the gel. The hydrogel also transforms into
solution upon variation of the pH of the system. In a nutshell,
we have described, for the first time, the utilization of a readily
available, biocompatible orotic acid, OA, as a supramolecular
synthon for the fabrication of a smart hydrogel with stoichio-
metry dependent injectable behavior.
`
J. Zhang, S. De Feyter, P. Leclere, A. P. H. J. Schenning and E. W.
Meijer, J. Am. Chem. Soc., 2007, 129, 9819; (k) J. F. Hulvat, M. Sofos,
K. Tajima and S. I. Stupp, J. Am. Chem. Soc., 2005, 127, 366; (l) S. K.
Samanta and S. Bhattacharya, Chem. Commun., 2013, 49, 1425.
5 (a) D. K. Kumar and J. W. Steed, Chem. Soc. Rev., 2014, 43, 2080;
(b) S. S. Babu, V. K. Praveen and A. Ajayaghosh, Chem. Rev., 2014,
114, 1973; (c) G. O. Lloyd and J. W. Steed, Nat. Chem., 2009, 1, 437;
(d) J. M. J. Paulusse, D. J. M. van Beek and R. P. Sijbesma, J. Am. Chem.
Soc., 2007, 129, 2392; (e) R. G. Weiss, J. Am. Chem. Soc., 2014, 136, 7519;
( f ) P. Duan, H. Cao, L. Zhang and M. Liu, Soft Matter, 2014, 10, 5428;
(g) V. K. Praveen, C. Ranjith and N. Armaroli, Angew. Chem., Int. Ed.,
2014, 53, 365; (h) X. Yang, G. Zhang and D. Zhang, J. Mater. Chem.,
2012, 22, 38; (i) J. T. van Herpt, M. C. A. Stuart, W. R. Browne and
B. L. Feringa, Chem. – Eur. J., 2014, 20, 3077; ( j) M. J. M. Munoz and
´
G. Fernandez, Chem. Sci., 2012, 3, 1395; (k) B. N. Ghosh, S. Bhowmik,
P. Mal and K. Rissanen, Chem. Commun., 2014, 50, 734; (l) J. K. Sahoo,
S. K. M. Nalluri, N. Javid, H. Webb and R. V. Ulijn, Chem. Commun.,
2014, 50, 5462; (m) J. Li, I. Cvrtila, M. C. Delsuc, E. Otten and S. Otto,
Chem. – Eur. J., 2014, 20, 15709; (n) J. Seo, J. W. Chung, J. E. Kwon and
S. Y. Park, Chem. Sci., 2014, 5, 4845; (o) F. R. Llansola, J. F. Miravet and
B. Escuder, Chem. Commun., 2009, 7303; (p) W. Li, I. Park, S.-K. Kang
and M. Lee, Chem. Commun., 2012, 48, 8796; (q) V. Stepanenko,
X.-Q. Li, J. Gershberg and F. Wu¨rthner, Chem. – Eur. J., 2013, 19,
4176; (r) E. Krieg, E. Shirman, H. Weissman, E. Shimoni, S. G. Wolf,
I. Pinkas and B. Rybtchinski, J. Am. Chem. Soc., 2009, 131, 14365;
´
´
(s) F. Aparicio, F. Garcıa and L. Sanchez, Chem. – Eur. J., 2013, 19, 3239.
6 (a) F. M. Menger and A. V. Peresypkin, J. Am. Chem. Soc., 2003, 125, 5340;
(b) V. S. Balachandran, S. R. Jadhav, P. Pradhan, S. De Carlo and G. John,
Angew. Chem., Int. Ed., 2010, 49, 9509; (c) C. B. Minkenberg, W. E.
Hendriksen, F. Li, E. Mendes, R. Eelkema and J. H. van Esch, Chem.
Commun., 2012, 48, 9837; (d) P. Long and J. Hao, Soft Matter, 2010,
6, 4350; (e) H. Oh, V. Javvaji, N. A. Yaraghi, L. Abezgauz, D. Danino and
S. R. Raghavan, Soft Matter, 2013, 9, 11576; ( f ) Y. Hisamatsu,
S. Banerjee, M. B. Avinash, T. Govindaraju and C. Schmuck,
Angew. Chem., Int. Ed., 2013, 52, 12550; (g) S. Bhattacharjee and
S. Bhattacharya, J. Mater. Chem. A, 2014, 2, 17889; (h) S. Bhattacharjee
and S. Bhattacharya, Chem. – Asian J., 2015, 10, 572; (i) S. Himmelein,
V. Lewe, M. C. A. Stuart and B. J. Ravoo, Chem. Sci., 2014, 5, 1054.
7 (a) F. J. M. Hoeben, I. O. Shklyarevskiy, M. J. Pouderoijen, H. Engelkamp,
A. P. H. J. Schenning, P. C. M. Christianen, J. C. Maan and E. W. Meijer,
Angew. Chem., Int. Ed., 2006, 45, 1232; (b) P. Rajamalli and E. Prasad, Soft
Matter, 2012, 8, 8896.
Notes and references
1 (a) M. T. McCann, M. M. Thompson, I. C. Gueron and M. Tuchman,
Clin. Chem., 1995, 41, 739; (b) Z.-X. Chen, X.-X. Su and S.-P. Deng,
J. Phys. Chem. B, 2011, 115, 1798.
2 (a) P. Sahoo, R. Sankolli, H.-Y. Lee, S. R. Raghavan and P. Dastidar,
Chem. – Eur. J., 2012, 18, 8057; (b) W. Edwards and D. K. Smith,
J. Am. Chem. Soc., 2013, 135, 5911; (c) S. Bhattacharjee, S. Datta and
S. Bhattacharya, Chem. – Eur. J., 2013, 19, 16672; (d) L. Chen,
T. O. McDonald and D. J. Adams, RSC Adv., 2013, 3, 8714;
(e) H. Maeda, W. Hane, Y. Bando, Y. Terashima, Y. Haketa,
H. Shibaguchi, T. Kawai, M. Naito, K. Takaishi, M. Uchiyama and
´
´
´
8 F. Garcıa, G. Fernandez and L. Sanchez, Chem. – Eur. J., 2009, 15, 6740.
9 J. E. Betancourt, C. Subramani, J. L. S. Velez, E. R. Molinar, V. M.
Rotello and J. M. Rivera, Chem. Commun., 2010, 46, 8537.
A. Muranaka, Chem. – Eur. J., 2013, 19, 16263; ( f ) Y. Yoshii, 10 (a) V. Percec, M. Peterca, M. E. Yurchenko, J. G. Rudick and P. A. Heiney,
´
N. Hoshino, T. Takeda, H. Moritomo, J. Kawamata, T. Nakamura
and T. Akutagawa, Chem. – Eur. J., 2014, 20, 16279; (g) Q. Xia,
Y. Mao, J. Wu, T. Shu and T. Yi, J. Mater. Chem. C, 2014, 2, 1854.
3 (a) B. Roy, P. Bairi and A. K. Nandi, RSC Adv., 2014, 4, 1708;
(b) B. Roy, P. Bairi, P. Chakraborty and A. K. Nandi, Supramol.
Chem., 2013, 25, 335; (c) S. Mahesh, R. Thirumalai, S. Yagai,
A. Kitamura and A. Ajayaghosh, Chem. Commun., 2009, 5984;
(d) J. Cui and A. del Campo, Chem. Commun., 2012, 48, 9302;
Chem. – Eur. J., 2008, 14, 909; (b) S. Saha, J. Bachl, T. Kundu, D. D. Dıaz
and R. Banerjee, Chem. Commun., 2014, 50, 3004; (c) S. Bhattacharjee
and S. Bhattacharya, Chem. Commun., 2014, 50, 11690; (d) H. Wei, S. Du,
Y. Liu, H. Zhao, C. Chen, Z. Li, J. Lin, Y. Zhang, J. Zhang and X. Wan,
Chem. Commun., 2014, 50, 1447; (e) L. Yan, G. Li, Z. Ye, F. Tian and
S. Zhang, Chem. Commun., 2014, 50, 14839; ( f ) M. Zhang, D. Xu, X. Yan,
J. Chen, S. Dong, B. Zheng and F. Huang, Angew. Chem., Int. Ed., 2012,
51, 7011.
6768 | Chem. Commun., 2015, 51, 6765--6768
This journal is ©The Royal Society of Chemistry 2015