Please do not adjust margins
Journal of Materials Chemistry A
DOI: 10.1039/C5TA06108C
COMMUNICATION
Journal Name
Accordingly, N-doped carbon (N-C) shells play a key role in 2 J. Greeley, I. Stephens, A. Bondarenko, T. P. Johansson, H. A.
Hansen, T. Jaramillo, J. Rossmeisl, I. Chorkendorff and J. K.
Nørskov, Nat. Chem., 2009, , 552-556.
S. H. Noh, B. Han and T. Ohsaka, Nano Res., 2015.
S. H. Noh, M. H. Seo, J. K. Seo, P. Fischer and B. Han,
Nanoscale, 2013, 5, 8625-8633.
regulating the adsorption energy of O, which substantially
enhances the ORR activity to a comparable level to the Pt(111)
surface. The electronic interactions between the inner Cu
particle and N-C shells can be described using an electronic
charge distribution as shown in Fig. 4b. The encapsulated Cu
particle clearly donates electronic charges to the N-C layers on
1
3
4
5
6
M. Shao, Electrocatalysis in Fuel Cells, Springer, London, 2013.
X.-H. Yan, G.-R. Zhang and B.-Q. Xu, Chin. J. Catal., 2013, 34
,
-
average 0.07 e per Cu atom, which is absent in the Empty@N-
1992-1997.
X.-H. Yan and B.-Q. Xu, J. Mater. Chem. A, 2014, 2, 8617-8622.
C structure (Fig. S11). Consequently, the N-C shell that
7
encapsulates the Cu particle enables favorable electronic 8 M.-Q. Wang, W.-H. Yang, H.-H. Wang, C. Chen, Z.-Y. Zhou and
2
interactions with adsorbates in the ORR. The electronic
2
S.-G. Sun, ACS Catal., 2014, 4, 3928-3936.
charge donation may also increase the interface contact force 9 P. W. Menezes, A. Indra, D. González-Flores, N. R. Sahraie, I.
Zaharieva, M. Schwarze, P. Strasser, H. Dau and M. Driess, ACS
between the Cu particle and N-C shells. A detailed electronic
Catal., 2015,
0 G. Wu, K. L. More, C. M. Johnston and P. Zelenay, Science,
011, 332, 443-447.
1 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai,
Nat. Mater., 2011, 10, 780-786.
5, 2017-2027.
density distribution in Cu@N-C is illustrated in Fig. S11 and S12.
1
1
2
Conclusions
We synthesized Cu@N-C (CO
completely encapsulated in an N-doped carbon shell, and the
shell thickness was optimized by oxidizing carbons with CO
2
), where the Cu particle was 12 Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier and H. Dai,
J. Am. Chem. Soc., 2012, 134, 3517-3523.
13 Y. Hu, J. O. Jensen, W. Zhang, L. N. Cleemann, W. Xing, N. J.
Bjerrum and Q. Li, Angew. Chem., Int. Ed., 2014, 53, 3675-
2
.
Using experimental measurements and DFT calculations, we
found that the catalysts have outstanding properties in both
ORR activity and electrochemical durability via a favorably
induced electronic interaction between the inner Cu and N-C
shells. Furthermore, the N-C shells strongly protect the Cu
particle against dissolution into aqueous solutions or chemical
3
679.
4 H. T. Chung, J. H. Won and P. Zelenay, Nat. Commun., 2013,
922.
5 Y. Hou, T. Huang, Z. Wen, S. Mao, S. Cui and J. Chen, Adv.
Energy Mater., 2014,
6 M. P. Fernández-García, P. Gorria, M. Sevilla, M. P. Proença,
R. Boada, J. Chaboy, A. B. Fuertes and J. A. Blanco, J. Phys.
Chem. C, 2011, 115, 5294-5300.
1
1
1
4,
1
4
.
oxidation. Cu@N-C(CO
2
) has significantly better ORR activity
than the Cu@N-C particles that were fabricated using
hydrothermal or only heat treatments. Our approach will be 17 G.-X. Zhu, X.-W. Wei and S. Jiang, J. Mater. Chem., 2007, 17
notably useful to the design of highly active, durable and
2301-2306.
cheap catalysts for
wide range of catalysts for 18 Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He
,
a
and J. Chen, Adv. Mater., 2012, 24, 1399-1404.
9 J. Deng, P. Ren, D. Deng, L. Yu, F. Yang and X. Bao, Energy &
electrochemical devices as promising alternatives to the costly
Pt-based catalysts.
1
2
2
Environmental Science, 2014,
0 J. Deng, L. Yu, D. Deng, X. Chen, F. Yang and X. Bao, J. Mater.
Chem. A, 2013, , 14868-14873.
1 J. Deng, P. Ren, D. Deng and X. Bao, Angew. Chem., Int. Ed.,
015, 54, 2100-2104.
7, 1919-1923.
1
Acknowledgments
2
This study was supported by the Ministry of Education, Culture, 22 S. H. Noh, D. H. Kwak, M. H. Seo, T. Ohsaka and B. Han,
Sport, Science and Technology (MEXT), Japan and the Global
Electrochim. Acta, 2014, 140, 225-231.
Frontier Program through the Global Frontier Hybrid Interface 23 T. C. Chen, M. Q. Zhao, Q. Zhang, G. L. Tian, J. Q. Huang and F.
Materials (GFHIM) of the National Research Foundation of
Wei, Adv. Funct. Mater., 2013, 23, 5066-5073.
Korea (NRF), which is funded by the Ministry of Science, ICT & 24 D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G.
Future Planning (grant number 2013M3A6B1078882). The
Sun and X. Bao, Angew. Chem., Int. Ed., 2013, 52, 371-375.
New and Renewable Energy R&D Program (20113020030020) 25 J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang and L. Guo, Sci.
under the Ministry of Knowledge Economy, Republic of Korea
Rep., 2013,
partially supported this work. This study was performed using 26 K. Latham, G. Jambu, S. Joseph and S. Donne, ACS
Tsubame 2.5 at the Global Scientific Information and
Sustainable Chem. Eng., 2014, , 755-764.
Computing Center of Tokyo Institute of Technology. The 27 L. Qu, Y. Liu, J.-B. Baek and L. Dai, ACS Nano, 2010,
authors gratefully acknowledge Dr. Y. Nabae for BET surface
1326.
area measurements. Seunghyo Noh also thanks the 28 D. Kwak, A. Khetan, S. Noh, H. Pitsch and B. Han,
3.
2
4, 1321-
Government of Japan for the MEXT scholarship.
ChemCatChem, 2014, 6, 2662-2670.
2
3
9 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R.
Kitchin, T. Bligaard and H. Jonsson, J. Phys. Chem. B, 2004,
108, 17886-17892.
References
0 B. Hammer and J. K. Nørskov, Adv. Catal., 2000, 45, 71-129.
1
M. Doyle, G. Rajendran, W. Vielstich, H. A. Gasteiger and A.
Lamm, Handbook of Fuel Cells Fundamentals, Technology
and Applications, Wiley, New York, 2003.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins