396
M.S. Kumar et al. / Journal of Catalysis 227 (2004) 384–397
small (oligomeric) Fe oxide clusters, and large Fe oxide ag-
gregates. The degree of aggregation and the order of the ag-
gregates can also be studied by temperature-dependent EPR
measurements where it is reflected in increasing intensity of
the cluster signal due to breakdown of the antiferromagnetic
coupling. Based on these assignments, the following conclu-
sions could be derived:
References
[1] G.I. Panov, G.A. Sheveleva, A.S. Kharitonov, V.N. Romannikov, L.A.
Vostrikova, Appl. Catal. A 82 (1992) 31.
[2] A. Ribera, I.W.C.E. Arends, S. de Vries, J. Perez-Ramirez, R. Sheldon,
J. Catal. 195 (2000) 287.
[3] J. Perez-Ramirez, F. Kapteijn, G. Mul, X. Xu, J.A. Moulijn, Catal.
Today 76 (2002) 55.
[4] A.-Z. Ma, W. Grünert, Chem. Commun. (1999) 71.
[5] X. Feng, W.K. Hall, Catal. Lett. 41 (1996) 45.
[6] H.-Y. Chen, W.M.H. Sachtler, Catal. Today 42 (1998) 73.
[7] R.Q. Long, R.T. Yang, Catal. Lett. 74 (2001) 201.
[8] G. Berlier, G. Spoto, S. Bordiga, G. Ricchiardi, P. Fisicaro, A. Zec-
china, I. Rossetti, E. Selli, L. Forni, E. Giamello, C. Lamberti, J. Ca-
tal. 208 (2002) 64.
[9] A.A. Battiston, J.H. Bitter, D.C. Koningsberger, J. Catal. 218 (2003)
163.
[10] F. Heinrich, C. Schmidt, E. Löffler, M. Menzel, W. Grünert, J. Ca-
tal. 212 (2002) 157.
[11] E.J.M. Hensen, Q. Zhu, M.M.R.M. Hendrix, A.R. Overweg, P.J. Kooy-
man, M.V. Sychev, R.A. van Santen, J. Catal. 221 (2004) 560.
[12] R.Q. Long, R.T. Yang, J. Am. Chem. Soc. 121 (1999) 5595.
[13] Q. Sun, Z.-X. Gao, H.-Y. Chen, W.M.H. Sachtler, J. Catal. 201 (2001)
88.
[14] A.A. Battiston, J.H. Bitter, D.C. Koningsberger, Catal. Lett. 66 (2000)
75.
[15] P. Marturano, L. Drozdova, A. Kogelbauer, R. Prins, J. Catal. 192
(2000) 236.
[16] J. Jia, Q. Sun, B. Wen, L.X. Chen, W.M.H. Sachtler, Catal. Lett. 82
(2002) 7.
[17] A.A. Battiston, J.H. Bitter, F.M.F. de Groot, A.R. Overweg, O. Ste-
phan, J.A. van Bokhoven, P.J. Kooyman, C. van der Spek, G. Vanko,
D.C. Koningsberger, J. Catal. 213 (2003) 251.
All preparations (including the mechanochemical route)
lead to the coexistence of different iron species. In all cases,
isolated Fe sites are found, which are predominant after the
mechanochemical route (which leads to low Fe content), but
minority species with the other preparations. In the CVD
preparation, clustered species occur already after the wash-
ing step, but their quantity and size increase strongly during
calcination, with low gradients of temperature rise resulting
in higher Fe dispersions. Intense washing of the material af-
ter the CVD step also favors higher Fe dispersion but does
not prevent clustering. With a matrix of low density of Brøn-
sted sites but high defect density, a low Fe dispersion before
calcination was transformed into a highly disperse (but still
largely clustered) Fe phase, probably due to the internal de-
fects providing additional aggregation nuclei. Calcination
leads also to a significant change in the coordination sphere
of isolated Fe ions, which might be caused by a condensa-
tion of two charge-+balancing OH groups to an O2− ligand
(Fe(OH)2+ → FeO ). The rehydration of the calcined state
is slow at room temperature.
Comparison of the distribution of species detected by
UV/VIS spectroscopy with activity trends in NH3-SCR sug-
gests that different entities (isolated sites, oligomers, prob-
ably also the surface of particles) participate in this reac-
tion. The acidity of the zeolite is of minor importance with
catalysts that contain clustered entities. For isobutane-SCR,
the participation of isolated sites is suggested by the re-
markable performance of a catalyst that is almost void of
clustered entities. A participation of isolated sites is also
inferred from the observation that during the use of the
catalysts in the SCR reaction on a timescale where no de-
activation was noted, oligomeric clusters tend to aggregate
and achieve a more perfect order while the amount of iso-
latedꢀsites remains constant. Among the isolated sites, one
(at g ≈ 4.3) appears to be insensitive to influences from
the gas phase. Possible candidates for the active site are the
signals at gꢀ ≈ 6 and gꢀ ≈ 2 (isolated species), where the
latter is difficult to observe. The observation that nonselec-
tive oxidation of the reductant (isobutane or NH3) starts at
higher temperatures with a catalyst of low content of clus-
tered species suggests that aggregates favor this undesired
reaction.
[18] R. Joyner, M. Stockenhuber, J. Phys. Chem. B 103 (1999) 5963.
[19] Z. Sobalik, A. Vondrova, Z. Tvaruskova, B. Wichterlova, Catal. Today
75 (2002) 347.
[20] F. Heinrich, C. Schmidt, E. Löffler, W. Grünert, Catal. Commun. 2
(2000) 317.
[21] H.-Y. Chen, El-M. El-Malki, X. Wang, R.A. van Santen, W.M.H.
Sachtler, J. Mol. Catal. A: Chem. 162 (2000) 159.
[22] A. Brückner, R. Lück, W. Wieker, B. Fahlke, H. Mehner, Zeolites 12
(1992) 380.
[23] D. Goldfarb, M. Bernardo, K.G. Strohmaier, D.E.W. Vaughan, H. Tho-
mann, J. Am. Chem. Soc. 116 (1994) 6344.
[24] A. Brückner, U. Lohse, H. Mehner, Micropor. Mesopor. Mater. 20
(1998) 207.
[25] A.V. Kucherov, C.N. Montreuil, T.N. Kucherova, M. Shelef, Catal.
Lett. 56 (1998) 173.
[26] A. Brückner, G.-U. Wolf, M. Meisel, R. Stösser, H. Mehner, F. Ma-
junke, M. Baerns, J. Catal. 154 (1995) 11.
[27] S. Bordiga, R. Buzzoni, F. Geobaldo, C. Lamberti, E. Giamello,
A. Zecchina, G. Leofanti, G. Petrini, G. Tozzola, G. Vlaic, J. Catal. 158
(1996) 486.
[28] J.H. Bitter, A.A. Battiston, S. van Donk, K.P. de Jong, D.C. Konings-
berger, Micropor. Mesopor. Mater. 64 (2003) 175.
[29] A. Brückner, B. Kubias, B. Lücke, Catal. Today 32 (1996) 215.
[30] P. Wenquin, Q. Shilun, K. Zhiyun, P. Shaoyi, Stud. Surf. Sci. Catal. 49
(1989) 281.
[31] A.F. Ojo, J. Dwyer, R.V. Parish, Stud. Surf. Sci. Catal. 49 (1989)
227.
[32] R. Aasa, J. Chem. Phys. 52 (1983) 3919.
[33] B.G. Fox, J.D. Lipscomb, in: C.C. Reddy, G.A. Hamilton, K.M.
Madyastha (Eds.), Biological Oxidation Systems, vol. 1, Academic
Press, San Diego, CA, 1990, p. 367.
Acknowledgment
[34] H.H. Tippins, Phys. Rev. B 1 (1970) 126.
[35] G. Lehmann, Z. Phys. Chem. Neue Folge 72 (1970) 279.
[36] X. Gao, I.E. Wachs, J. Phys. Chem. B 104 (2000) 1261.
We thank the Deutsche Forschungsgemeinschaft (DFG)
for financial support (Grants Br 1380/7-1 and Gr 1447/7-1).