SCHEME 2. Synthesis of Acyl Azides
TABLE 1. The Preparation of Acyl Azides 1
Literature
ref
1
R
yield %a
method
yield %
b
a
b
c
C6H5
4-CH3C6H4
2-thienyl
82 (80)
82 (81)
80 (79)
75 (71)
iv
v
ii
28
29
16
27
34
33
49
28
39
23
18
28
29
25
32
-
86
83
73
84
b
b
b
d
2-furanyl
iv
vii
vii
iv
iv
vii
iii
iv
iv
v
iv
vii
-
-
-
formation of oxazolidin-2,5-diones (Leuchs’ anhydrides).30 (vi)
Dess-Martin periodinane (DMP) and sodium azide have given
direct conversion of aldehydes to acyl azides, but the reaction
has to be conducted below 0 °C to suppress thermal rearrange-
c
22
75
34
c
e
f
g
2-indolyl
2-pyridyl
3-pyridyl
78 (76)
80 (73)
78 (72)
c
b
73
c
58
31
ment to isocyanate. (vii) Acyl azides can also be prepared
b
h
i
4-pyridyl
82 (73)
72 (71)
80
75
84
72
from acylhydrazines3
2-39
with NO equivalents, but this requires
+
b
b
availability of the hydrazide (Scheme 1).
PhCHdCH
b
Although methods (i)-(vii) are available for the preparation
of acyl azides, the majority involve acid chlorides as intermedi-
ates, which are difficult to achieve for many amino- or hydroxy-
substituted, unsaturated, heteroaromatic acids or those with other
sensitive functionalities. Thus a new and convenient method
for the preparation of acyl azides would be advantageous.
Recently, we described the synthesis of a wide range of
N-acylbenzotriazoles 3 as stable alternatives to acid chlo-
b
j
k
l
m
n
2-furanyl-CHdCH
3-hydroxy-2-naphthyl
L-Cbz-Phe
DL-Cbz-Phe
L-Tryp
81 (76)
81 (77)
85 (81)
88 (82)
83 (77)
83
c
81
-
-
-
-
-
a
Overall yield from acid is in parentheses. b Overall yield from acid.
c
Yield from hydrazide.
4
0,41
of L-1l with DL-1m, which showed two peaks for DL-1m and
one single peak for L-1l, which demonstrated chiral preservation
in the synthesis of R-amino acyl azides.
In conclusion, this approach affords a variety of acyl azides
a-n in overall good yields that are comparable to the literature
rides,
which have been used as acylation agents for the
42-44
45
preparation of amides,
Weinreb amides, cinnamoyl hy-
drazides, N-acylsulfonamides,47 and substituted 2-azinyl-1-
46
ethanones.48 Herein, we report their application to the prepa-
1
ration of acyl azides.
for the simple aromatic acid azides (1a, 1b) but improved for
compounds 1c,e-g under mild conditions. The procedure avoids
the following: (1) the use of cyanuric chloride, triphosgene,
and diphenylphosphoryl azide (DPPA) as reagents; (2) the use
N-Acylbenzotriazoles 3 are accessible in excellent yields from
benzotriazole, thionyl chloride, and the appropriate carboxylic
acid 2 according to established procedures.4
0,41
Treatment of 3
with sodium azide (1.5 equiv) in acetonitrile at room temperature
for 16 h afforded acyl azides in 72-83% yield (Scheme 2 and
Table 1). Reaction of sodium azide with chiral N-(Cbz-
aminoacyl)benzotriazoles provides the corresponding azides
without racemization as demonstrated by the L-form and DL-
form of phenylalanine. The chirality control in the synthesis
was confirmed by comparison of chiral HPLC chromatograms
+
of hydrazides and NO equivalents in multistep reactions for
1
d,e,s,k; (3) isomerization of R,â-unsaturated derivatives; (4)
racemization of the chiral center when amino acid derivatives
were used; and (5) Curtius rearrangements.
Experimental Section
Typical Procedure for Preparation of Acyl Azides 1a-n:
Sodium azide (1.5 mmol, 97 mg) was added to a solution of
appropriate N-acylbenzotriazoles (1 mmol) in acetonitrile
(
(
(
30) Wilder, R.; Mobashery, S. J. Org. Chem. 1992, 57, 2755.
31) Bose, D. S; Reddy, A. V. N. Tetrahedron Lett. 2003, 3543.
32) Wolf, G.; Friedman, O. M.; Dickinson, S. J.; Seligman, A. M. J.
(10 mL). One drop of water was added, and the mixture was stir-
Am. Chem. Soc. 1950, 72, 390.
33) Rinderknecht, H.; Koechlin, H.; Niemann, C. J. Org. Chem. 1953,
8, 971.
34) Yale, H. L.; Losee, K.; Martins, J.; Holsing, M.; Perry, F. M.;
Bernstein, J. J. Am. Chem. Soc. 1953, 75, 1933.
(
red at room temperature for 16 h. The solvent was evaporated, and
the residue was dissolved in diethyl ether and washed with
dilute aqueous sodium carbonate and water. The organic layer was
1
(
4
dried over MgSO and filtered. The solvent was evaporated under
(
(
(
35) Saxena, S.; Haksar, C. N. Curr. Sci. 1979, 48, 63.
36) Nettekoven, M. Synlett 2001, 1917.
37) Tarabara, I. N.; Yarovoi, M. Y.; Kas’yan, L. I. Russ. J. Org. Chem.
reduced pressure, and the residue was purified by column chro-
matography using hexane/diethyl ether (2:1) to give the acyl
azides 1a-n.
2
003, 39, 1676.
38) Macor, J. E.; Mullen, G.; Verhoest, P.; Sampognaro, A.; Shepardson,
B.; Mack, R. A. J. Org. Chem. 2004, 69, 6493.
(
N-Benzyloxycarbonyl-L-phenylalanine Azide (1l): yield 85%;
23
white microcrystals (Et
2
O/hexane); mp 148-149 °C; [R]
D
)
(39) Papeo, G.; Posteri, H.; Vianello, P.; Varasi, M. Synthesis 2004, 2886.
(40) Katritzky, A. R.; Zhang, Y.; Singh, S. K. Synthesis 2003, 2795.
(41) Katritzky, A. R.; Suzuki, K.; Wang, Z. Synlett 2005, 1656.
(42) Katritzky, A. R.; He, H.-Y.; Suzuki, K. J. Org. Chem. 2000, 65,
1
-
2.90° (c 1.39, DMF); H NMR (300 MHz, DMSO-d
6
) δ 2.79-
2
.87 (m, 1H), 3.04-3.10 (m, 1H), 4.15-4.22 (m, 1H), 5.00 (s,
13
2H), 7.19-7.36 (m, 10H), 7.66 (d, J ) 8.5 Hz, 1H); C NMR (75
MHz, DMSO-d ) δ 36.5, 55.6, 65.3, 126.4, 127.5, 127.8, 128.2,
28.3, 129.1, 137.0, 128.0, 156.0, 173.4. Anal. Calcd for
: C, 62.96; H, 4.98; N, 17.28. Found: C, 63.28; H,
8
7
210.
6
(43) Katritzky, A. R.; Yang, B.; Semenzin, D. J. Org. Chem. 1997, 62,
1
26.
17 16 4 3
C H N O
(
44) Katritzky, A. R.; Wang, M.; Yang, H.; Zhang, S.; Akhmedov, N.
G. ARKIVOC 2002, Viii, 134.
45) Katritzky, A. R.; Yang, H.; Zhang, S.; Wang, M. ARKIVOC 2002,
xi, 39.
5.16; N, 16.88.
N-Benzyloxycarbonyl-DL-phenylalanine Azide (1m): yield
(
1
88%; white microcrystals (Et
(300 MHz, DMSO-d
2
O/hexane); mp 130-132 °C; H NMR
(
46) Katritzky, A. R.; Wang, M.; Zhang, S. ARKIVOC 2001, ix, 19.
) δ 2.79-2.86 (m, 1H), 3.04-3.10 (m, 1H),
.15-4.22 (m, 1H), 5.00 (s, 2H), 7.19-7.36 (m, 10H), 7.67 (d, J
8.5 Hz, 1H); C NMR (75 MHz, DMSO-d ) δ 36.5, 55.6, 65.3,
6
26.4, 127.6, 127.8, 128.2, 128.3, 129.1, 137.0, 138.0, 156.0, 173.4.
: C, 62.96; H, 4.98; N, 17.28. Found:
C, 63.24; H, 5.17; N, 16.89.
6
(47) Katritzky, A. R.; Hoffmann, S.; Suzuki, K. ARKIVOC 2004, xii,
4
)
1
1
4.
(
13
48) Katritzky, A. R.; Abdel-Fattah, A. A. A.; Akhmedova, R. G.
ARKIVOC 2005, Vi, 329.
49) Saikachi, H.; Kitagawa, T.; Nasu, A.; Sasaki, H. Chem. Pharm. Bull.
981, 29, 237.
(
16 4 3
Anal. Calcd for C17H N O
1
J. Org. Chem, Vol. 72, No. 15, 2007 5803