10.1002/anie.201905992
Angewandte Chemie International Edition
COMMUNICATION
found in anaerobic bacteria (Table S5), suggesting that
anaerobes represent an untapped trove of thioamidated NRPs.
In summary, we have reconstituted the first instance of
thioamide formation in a NRP. The data presented herein
demonstrate that this unusual thioamide synthetase functions on
thiotemplated substrates and represents a new subfamily of the
Fe-S cluster dependent AANH enzymes. In addition to further
clarifying the CTA biosynthetic pathway, the characterization
CtaC serves as a foundation for the discovery of additional
thioamidated NRPs. Future studies will focus on unearthing the
native sulfur source for this enzyme and the characterization of
the remaining steps in CTA maturation.
Acknowledgements
We thank A. Perner, T. Kindel and M. García-Altares Peréz for
MS measurements and H. Heinecke for NMR measurements.
We are grateful to K. Ishida and J. Kumpfmüller for technical
advice. K.L.D. and F.K. were supported by the Humboldt
Research Fellowship for Postdoctoral Researchers and
InfectControl 2020 (FKZ 03ZZ0803A), respectively. Financial
support by the DFG (Leibniz Award to C.H.) is gratefully
acknowledged.
Conflict of Interest
The authors declare no conflict of interest.
Keywords: antibiotics • biosynthesis • enzymes • natural
products • thioamide
[1] a) A. Choudhary, R. T. Raines, Chembiochem 2011, 12, 1801-1807; b)
E. J. Petersson, J. M. Goldberg, R. F. Wissner, Phys. Chem. Chem.
Phys. 2014, 16, 6827-6837; c) N. Mahanta, D. M. Szantai-Kis, E. J.
Petersson, D. A. Mitchell, ACS Chem. Biol. 2019, 14, 142-163.
[2] a) K. L. Dunbar, D. H. Scharf, A. Litomska, C. Hertweck, Chem. Rev.
2017, 117, 5521-5577; b) S. Banala, R. D. Sussmuth, Chembiochem
2010, 11, 1335-1337.
[3] a) T. Lincke, S. Behnken, K. Ishida, M. Roth, C. Hertweck, Angew.
Chem. Int. Ed. 2010, 49, 2011-2013; b) S. Behnken, T. Lincke, F. Kloss,
K. Ishida, C. Hertweck, Angew. Chem. Int. Ed. 2012, 51, 2425-2428.
[4] a) A. I. Chiriac, F. Kloss, J. Kramer, C. Vuong, C. Hertweck, H. G. Sahl,
J. Antimicrob. Chemother. 2015, 70, 2576-2588; b) V. F. Miari, P.
Solanki, Y. Hleba, R. A. Stabler, J. T. Heap, Antimicrob. Agents
Chemother. 2017, 61; c) F. Kloss, A. I. Chiriac, C. Hertweck, Chem. Eur.
J. 2014, 20, 15451-15458.
[5] K. L. Dunbar, H. Buttner, E. M. Molloy, M. Dell, J. Kumpfmuller, C.
Hertweck, Angew. Chem. Int. Ed. 2018, 57, 14080-14084.
[6] a) N. Mahanta, A. Liu, S. Dong, S. K. Nair, D. A. Mitchell, Proc. Natl.
Acad. Sci. U.S.A. 2018, 115, 3030-3035; b) A. Litomska, K. Ishida, K. L.
Dunbar, M. Boettger, S. Coyne, C. Hertweck, Angew. Chem. Int. Ed.
2018, 57, 11574-11578; c) G. E. Kenney, L. M. K. Dassama, M. E.
Pandelia, A. S. Gizzi, R. J. Martinie, P. Gao, C. J. DeHart, L. F.
Schachner, O. S. Skinner, S. Y. Ro, X. Zhu, M. Sadek, P. M. Thomas, S.
C. Almo, J. M. Bollinger, Jr., C. Krebs, N. L. Kelleher, A. C. Rosenzweig,
Science 2018, 359, 1411-1416; d) D. D. Nayak, N. Mahanta, D. A.
Mitchell, W. W. Metcalf, Elife 2017, 6; e) J. Liu, Z. Lin, Y. Li, Q. Zheng, D.
Chen, W. Liu, Org. Biomol. Chem. 2019, 17, 3727-3731; f) C. J.
Schwalen, G. A. Hudson, B. Kille, D. A. Mitchell, J. Am. Chem. Soc.
2018, 140, 9494-9501.
Figure 3. Homologs of CtaC are found in diverse thiotemplated
biosynthetic pathways. (A) Sequence similarity network of CtaC homologs.
Nodes are colored based on the class of biosynthetic machinery found near
the CtaC homolog, while their shape denotes the phylum of the organism
harboring the gene cluster. NCT, non-canonical thiotemplate; PKS, polyketide
synthase. (B) Representative biosynthetic gene clusters that encode a CtaC
homolog (selected based on architecture diversity). Numbers correspond to
the node numbering in panel A. rSAM, radical S-adenosylmethionine enzyme.
CtaE, thus serving as a priming residue that allows CtaC to
concurrently install all thioamides in chemically equivalent
positions (Figure 2G).
As CtaC is the first example of
a NRP thioamide
synthetase, we sought to determine if this strategy for
thioamidated NRP biosynthesis exists outside CTA maturation.
To this end, we retrieved 100 homologs of CtaC from GenBank
and generated a sequence similarity network with the protein
sequences (Figure 3A).[14] Next, we surveyed the genomic
neighborhood surrounding the ctaC homolog for genes encoding
secondary metabolite biosynthetic enzymes (Figure 3A). Notably,
genes encoding thiotemplated biosynthetic enzymes were found
in approximately 75% of cases. In addition to a small number of
CTA-like biosynthetic gene clusters, many CtaC homologs are
encoded in the vicinity of NRPSs (Figure 3B), suggesting that
this strategy for thioamidation is also used by canonical NRP
biosynthetic pathways. Moreover, the majority of homologs were
[7] M. Fellner, R. P. Hausinger, J. Hu, Crit. Rev. Biochem. Mol. Biol. 2018,
53, 607-622.
[8] a) N. Shigi, Front. Microbiol. 2018, 9, 2679; b) S. Coyne, C. Chizzali, M.
N. Khalil, A. Litomska, K. Richter, L. Beerhues, C. Hertweck, Angew.
Chem. Int. Ed. 2013, 52, 10564-10568.
[9] K. N. McAllister, L. Bouillaut, J. N. Kahn, W. T. Self, J. A. Sorg, Sci. Rep.
2017, 7, 14672.
[10] T. Xu, Y. Li, Z. Shi, C. L. Hemme, Y. Li, Y. Zhu, J. D. Van Nostrand, Z.
He, J. Zhou, Appl. Environ. Microbiol. 2015, 81, 4423-4431.
[11] a) D. Bouvier, N. Labessan, M. Clemancey, J. M. Latour, J. L. Ravanat,
M. Fontecave, M. Atta, Nucleic Acids Res. 2014, 42, 7960-7970; b) Y.
Liu, D. J. Vinyard, M. E. Reesbeck, T. Suzuki, K. Manakongtreecheep, P.
This article is protected by copyright. All rights reserved.