ChemComm
Communication
L. Kang, W. T. Delgado, O. Shynkaruk, M. J. Ferguson, R. McDonald
and E. Rivard, J. Am. Chem. Soc., 2013, 135, 5360–5363.
3 (a) E. I. Carrera, T. M. McCormick, M. J. Kapp, A. J. Lough and
D. S. Seferos, Inorg. Chem., 2013, 52, 13779–13790; (b) E. I. Carrera
and D. S. Seferos, Dalton Trans., 2014; (c) T. M. McCormick, E. I. Carrera,
T. B. Schon and D. S. Seferos, Chem. Commun., 2013, 49, 11182–11184.
4 B. Wrackmeyer, P. Thoma, S. Marx, G. Glatz and R. Kempe, Z. Anorg.
Allg. Chem., 2013, 639, 1205–1213.
5 C. F. Jiang, O. Blacque and H. Berke, Organometallics, 2010, 29,
125–133.
6 G. Kehr and G. Erker, Chem. Commun., 2012, 48, 1839–1850.
7 R. L. Melen, Chem. Commun., 2014, 50, 1161–1174.
5 to 6 illustrate that the FLP addition to alkyne is reversible
presumably a result of destabilizing steric congestion prompting
formation of the thermodynamically stable 4 and 6. It is also
noteworthy that the FLP addition products were only observed
for the systems where the transient B/Te species contains electro-
philic B(C6F5)2 fragments, suggesting that only the more Lewis
acidic systems can effect FLP additions. In the case of 7, apparently
the reduced steric congestion in the FLP addition product and the
increased basicity of the Te center garners stability. Effects to
convert 7 to the analogous 1-bora-4-tellurocyclohexa-2,5-diene
heterocycle were unsuccessful, leading only to thermal degradation
and a mixture of unidentified products. Nonetheless, to the best of
our knowledge, the reactions described herein are the first examples
in which that intramolecular 1,1-carboboration are observed to be in
competition with intermolecular FLP addition.
¨
8 J. Mobus, Q. Bonnin, K. Ueda, R. Frohlich, K. Itami, G. Kehr and
G. Erker, Angew. Chem., Int. Ed., 2012, 51, 1954–1957.
¨
9 (a) A. Feldmann, A. Iida, R. Frohlich, S. Yamaguchi, G. Kehr and
G. Erker, Organometallics, 2012, 31, 2445–2451; (b) F. Ge, G. Kehr,
C. G. Daniliuc and G. Erker, J. Am. Chem. Soc., 2014, 136, 68–71.
10 B. Wrackmeyer and K. Horchler, J. Organomet. Chem., 1990, 399,
1–10.
¨
11 C. Eller, G. Kehr, C. G. Daniliuc, R. Frohlich and G. Erker, Organo-
metallics, 2013, 32, 384–386.
In summary, we have demonstrated that the reaction between
bis(phenylethynyl)telluroether and a series of boranes leads to two
products. Following initial intermolecular 1,1-carboboration, the
intermediate can either undergo intramolecular 1,1-carboboration
or intermolecular FLP addition. Compounds 2, 4 and 6 are of
particular interest as they present new tellurium-containing hetero-
cycles with an electrophilic element embedded within the hetero-
cycle. These facile and high-yielding syntheses are especially
attractive for future applications in optoelectronic materials. Such
investigations are currently underway in our laboratory.
12 F. A. Tsao and D. W. Stephan, Dalton Trans., 2015, 44, 71–74.
13 M. J. Dabdoub and J. V. Comasseto, Organometallics, 1988, 7, 84–87.
14 (a) L. Killian and B. Wrackmeyer, J. Organomet. Chem., 1978, 153,
153–164; (b) B. Wrackmeyer, K. Horchler and R. Boese, Angew.
Chem., Int. Ed., 1989, 28, 1500–1502; (c) B. Wrackmeyer and
G. Kehr, Polyhedron, 1991, 10, 1497–1506; (d) R. Koster, G. Seidel,
I. Klopp, C. Kruger, G. Kehr, J. Suss and B. Wrackmeyer, Chem. Ber./Recl.,
1993, 126, 1385–1396; (e) B. Wrackmeyer, S. Kundler and R. Boese,
Chem. Ber./Recl., 1993, 126, 1361–1370; ( f ) B. Wrackmeyer, G. Kehr and
D. Wettinger, Inorg. Chim. Acta, 1994, 220, 161–173; (g) B. Wrackmeyer,
S. Kundler, W. Milius and R. Boese, Chem. Ber., 1994, 127, 333–342;
(h) B. Wrackmeyer, S. Kundler and A. Arizacastolo, Phosphorus, Sulfur
Silicon Relat. Elem., 1994, 91, 229–239; (i) B. Wrackmeyer, A. Pedall,
W. Milius, O. L. Tok and Y. N. Bubnov, J. Organomet. Chem., 2002, 649,
232–245; ( j) B. Wrackmeyer, B. H. Kenner-Hofmann, W. Milius,
P. Thoma, O. L. Tok and M. Herberhold, Eur. J. Inorg. Chem., 2006,
101–108.
NSERC of Canada is thanked for financial support. DWS is
grateful for the award of a Canada Research Chair. FAT is
grateful for an NSERC CGS-D.
15 Z. Garkani-Nejad and M. Poshteh-Shirani, Can. J. Chem., 2011, 89,
598–607.
16 (a) J. Beck, Chem. Ber., 1995, 128, 23; (b) J. Beck and K. Mueller-
Buschbaum, Z. Anorg. Allg. Chem., 1997, 623, 409.
17 (a) M. A. Dureen, C. C. Brown and D. W. Stephan, Organometallics, 2010,
29, 6594–6607; (b) M. A. Dureen, C. C. Brown and D. W. Stephan,
Organometallics, 2010, 29, 6422–6432; (c) M. A. Dureen and
D. W. Stephan, J. Am. Chem. Soc., 2009, 131, 8396–8397.
Notes and references
1 (a) A. A. Jahnke and D. S. Seferos, Macromol. Rapid Commun., 2011,
32, 943–951; (b) T. Baumgartner, Acc. Chem. Res., 2014, 47, 1613.
2 (a) G. He, W. T. Delgado, D. J. Schatz, C. Merten, A. Mohammadpour,
L. Mayr, M. J. Ferguson, R. McDonald, A. Brown, K. Shankar and
E. Rivard, Angew. Chem., Int. Ed., 2014, 53, 4587–4591; (b) G. He,
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun., 2015, 51, 4287--4289 | 4289