Mendeleev Commun., 2020, 30, 106–108
ꢀaꢁ
ꢀbꢁ
ꢀcꢁ
carried out within the framework of the basic part of the state
task for 2017–2019 (project no. 4.7491.2017/BCh) with the
support from the Ministry of Science and Higher Education of
the Russian Federation. The authors are grateful to the DAAD
(German Academic Exchange Service) and to Birgit Wobith for
technical assistance.
Online Supplementary Materials
ꢀfꢁ
ꢀdꢁ
ꢀeꢁ
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2020.01.035.
References
1 B. Kumar, R. Kumar, I. Skvortsova and V. Kumar, Curr. Cancer Drug
Targets, 2017, 17, 357.
ꢂ0 µm
2 Y. Lu, J. Chen, M. Xiao, W. Li and D. D. Miller, Pharm. Res., 2012, 29,
2943.
Figure 2 Tubulin in A549 cells treated with (a) 0.5% DMSO (intact MT);
(b) 50 nm of 4c (partial depolymerization of MT, no clustering); (c) 100 nm
of 4c (complete depolymerization of MT, no tubulin clustering); (d) 100 nm
of 6 (point-like clustering); (e) 400 nm of 6 (moderate clustering); (f) 1200 nm
of 4b (strong clustering).
3 C. Vilanova, S. Díaz-Oltra, J. Murga, E. Falomir, M. Carda and
J. A. Marco, Bioorg. Med. Chem. Lett., 2015, 25, 3194.
4 P. Thomopoulou, J. Sachs, N. Teusch, A. Mariappan, J. Gopalakrishnan
and H.-G. Schmalz, ACS Med. Chem. Lett., 2016, 7, 188.
5 O. N. Zefirova, H. Lemcke, M. Lantow, E. V. Nurieva, B. Wobith,
G. E. Onishchenko, A. Hoenen, G. Griffiths, N. S. Zefirov and
S. A. Kuznetsov, ChemBioChem, 2013, 14, 1444.
6 O. N. Zefirova, E. V. Nurieva, B. Wobith, V. V. Gogol, N. A. Zefirov,
A. V. Ogonkov, D. V. Shishov, N. S. Zefirov and S. A. Kuznetsov,
Mol. Divers., 2017, 21, 547.
with the molecular docking data (see above), which predicted
different tubulin binding modes for a pair of structurally close
conjugates 4b/4c (but not for a shorter 4a/4b pair). Namely, the
biotest data for compounds 4a,b indicated that tubuloclustin
analogues with ether bond in the linker could induce formation
of strong tubulin clusters [see Figure 2(f)].
7 N. A. Zefirov,Yu. A. Evteeva, A. R. Fatkulin, S. Schulz, S. A. Kuznetsov
and O. N. Zefirova, Pharm. Chem. J., 2019, 53, 423 [Khim.-Farm. Zh.,
2019, 53 (5), 13].
Biological testing revealed that tubulin clustering ability of
novel compounds correlates with cytotoxicity, cell growth
inhibition (see Table 1) and earlier SAR studies for tubuloclustin
derivatives.6,9 Conjugate 6 activity was close to that of its
analogues B (n = 4, k = 1, X = CH2 and n = 5, k = 0, X = CH2),9
suggesting that clustering ability is negligibly affected by ester
bond position. The best IC50 and EC50 values in low nanomolar
concentration range were observed for compounds 4a and 4b.
The latter was equally active to tubuloclustin in both
antiproliferative assays. Each of conjugates 4a–c and 6 induced
nucleus fragmentation in A549 cells which is typical for the cells
undergoing apoptosis.18 The ability to cause apoptosis was close
for all new compounds, but there was no exact correlation
between apoptotic index (highest for 4c) and tubulin clustering
activity and cytotoxicity (see Online Supplementary Materials).
In conclusion, novel tubuloclustin analogues with ether
moiety in the linker between colchicine and adamantane
fragments were synthesized and tested in a series of bioassays.
The data obtained unambiguously prove that these conjugates
retain the ability to induce strong tubulin clustering. Compound
4b represents tubuloclustin analogue with extremely high
antiproliferative activity and improved metabolic stability and
therefore it is promising for further in vivo studies.
8 O. N. Zefirova, E.V. Nurieva,Ya. S. Glazkova, N.A. Zefirov,A.V. Mamaeva,
B. Wobith, V. I. Romanenko, N. A. Lesnaya, H. M. Treshchalina and
S. A. Kuznetsov, Pharm. Chem. J., 2014, 48, 373 [Khim.-Farm. Zh.,
2014, 48 (6), 19].
9 N.A. Zefirov, M. Hoppe, I.V. Kuznetsova, N.A. Chernyshov,Yu. K. Grishin,
O. A. Maloshitskaya, S. A. Kuznetsov and O. N. Zefirova, Mendeleev
Commun., 2018, 28, 308.
10 A. E. Prota, F. Danel, F. Bachmann, K. Bargsten, R. M. Buey,
J. Pohlmann, S. Reinelt, H. Lane and M. O. Steinmetz, J. Mol. Biol.,
2014, 426, 1848.
11 O. Trott and A. J. Olson, J. Comput. Chem., 2010, 31, 455.
12 E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch,
D. M. Greenblatt, E. C. Meng and T. E. Ferrin, J. Comput. Chem., 2004,
25, 1605.
13 G. M. Butov and V. M. Mokhov, Russ. J. Org. Chem., 2018, 54, 1760
(Zh. Org. Khim., 2018, 54, 1746).
14 J. D. Bagnato, A. L. Eilers, R. A. Horton and C. B. Grissom, J. Org.
Chem., 2004, 69, 8987.
15 N. A. Zefirov, Yu. A. Evteeva, B. Wobith, S. A. Kuznetsov and
O. N. Zefirova, Struct. Chem., 2019, 30, 465.
16 D. Gerlier and N. Thomasset, J. Immunol. Methods, 1986, 94, 57.
17 C. S. Potten, Br. J. Cancer, 1996, 74, 1743.
18 N. Zamzami and G. Kroetmer, Nature, 1999, 401, 127.
This work was supported by the Russian Science Foundation
Received: 5th August 2019; Com. 19/6009
(project no. 19-13-00084). Synthesis of initial alcohols 2a–c was
– 108 –