4010 J. Phys. Chem. B, Vol. 103, No. 20, 1999
Leatherman et al.
Carotenethiol is easily oxidized electrochemically (+0.53V
(but not all) methods of contacting a molecule. The use of a
conducting AFM combined with the insertion of the molecule
into an insulating matrix makes determination of the electrical
properties of linear conducting molecules straightforward. We
anticipate that this technique will lead to a deeper understanding
of the mechanisms of molecular conduction as different mo-
lecular systems are studied in the future.
vs SCE) and we expect that oxidation (hole transport) plays a
role in the enhanced conductivity of carotene. We have recently
8
reviewed the tunneling behavior of electroactive molecules. Han
8
et al. give expressions for the tunnel current as a function of
bias for a one-step model (the electron tunnels through the
unrelaxed molecular levels without occupying them) and a two-
step model (the electron occupies the molecular orbitals long
enough for relaxation to occur). The key parameters are E0, the
formal potential relative to the mean Fermi energy of the tip
and substrate, λ, the electronic reorganization energy, and R,
the fraction of the tip-substrate bias that appears across the
molecule-to-substrate gap (1 - R being the fraction dropped
across the tip-to-molecule gap). Dropping the approximation
Acknowledgment. This work was supported by the NSF
(Grants DBI-9513233, CHE-9709272, and INT-9600282) and
Molecular Imaging Corporation. We acknowledge useful dis-
cussions with Nongjain Tao.
References and Notes
8
of high bias used in our earlier work, the expression for net
current flow for the two-step model is
(1) Joachim, C., Roth, S., Eds. Atomic and Molecular Wires; Kluwer:
Dordrecht, 1997; Vol. 341.
(
2) Platt, J. R. Electronic Structure and Excitation of Polyenes and
R R - RtmR
sm mt
ms
Porphyrins. In Radiation Biology; Hollaender, A., Ed.; McGraw-Hill: New
York, 1956; pp 71-123.
I(V) ∝
(2)
Rsm + Rtm + Rms + Rmt
(3) Kohler, B. E. Electronic Properties of Linear Polyenes. In Conju-
gated Polymers; Br e´ das, J. L., Silbey, R., Eds.; Kluwer: Dordrecht, 1991;
pp 405-434.
where R is a tunneling rate and the subscripts m, s, and t refer
to the molecule, substrate and tip. The R values are calculated
from the integrals given by Han et al.8 The first step in
estimating E0 is to obtain the Fermi energy of the combined
tip-substrate system in volts vs SCE. The geometric mean of
the values for the work function of Au(111) (5.31V) and
polycrystalline Pt (5.65V) yields the work function of the
combined system. The work function of the SCE is 4.67 V,
giving the Fermi energy of the tip-substrate system as +0.81
V SCE. The formal potential for the first oxidation of the
carotenethiol was measured by cyclic voltammetry to be +0.53V
vs SCE so that E0 ) +0.28V. Calculated curves for some values
of R and λ (as marked) are shown in Figure 9. The symmetric
behavior of the curve (I(V) ≈ I(-V)) restricts R to a value near
(
4) Jeevarajan, A. S.; Khaled, M.; Kispert, L. D. J. Phys. Chem. 1994,
98, 7777-7781.
(5) Sereno, L.; Silber, J. J.; Otero, L.; Bohorquez, M. D. V.; Moore,
A. L.; Moore, T. A.; Gust, D. J. Phys. Chem. 1996, 100, 814-821.
6) Benniston, A. C.; Goulle, V.; Harriman, A.; Lehn, J. M.; Marczince,
B. J. Phys. Chem. 1994, 98, 8, 7798-7804.
7) Wasielewski, M. R.; Johnson, D. G.; Svec, W. A.; Kersey, K. M.;
(
(
Cragg, D. E.; Minsek, D. E. Long-distance photoinduced electron transfer
through polyene molecular wires. In Photochemical Energy ConVersion;
Norris, J., Meisel, D., Eds.; Elsevier: New York, 1989; pp 135-147.
(8) Han, W.; Durantini, E. N.; Moore, T. A.; Moore, A. L.; Gust, D.;
Rez, P.; Leatherman, G.; Seely, G. R.; Tao, N.; Lindsay, S. M. J. Phys.
Chem. 1997, 101, 10719-10725.
(
9) Datta, S.; Tian, W.; Hong, S.; Reifenberger, R.; Henderson, J. I.;
Kubiak, C. P. Phys. ReV. Lett. 1997, 79, 2530-2533.
10) Collins, P. G.; Zettl, A.; Bando, H.; Thess, A.; Smalley, R. E.
0
.5 (poor fits are obtained below 0.4 or above 0.6). This is
(
surprising, given the difference between the molecule-substrate
and molecule-tip junctions, but a similar result was obtained
Science 1997, 278, 100-102.
(11) Fan, F. R. F.; Bard, A. J. Science 1995, 267, 871-874.
9
by Datta et al. for tunneling through xylyldithiol. It contrasts
(12) Yazolani, A. I.; Eigler, D. M.; Lang, N. D. Science 1996, 272,
921-1924.
1
with a value near unity for tunneling through porphyrin
8
(13) Bumm, L. A.; Arnold, J. J.; Cygan, M. T.; Dunbar, T. D.; Burgin,
molecules attached to gold. Our data do not resolve the fine
T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 1996, 271,
705-1707.
14) Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N.; Zettl,
structure needed to discriminate between extreme values for λ.
For the same reason, we cannot discriminate between the one-
and two-step model.
1
(
A.; Thess, A.; Smalley, R. E. Science 1997, 275, 1922-1925.
Finally we note that there is considerable variation in the
current measured from molecule to molecule and from the same
molecule from scan to scan (reflected in the relatively large
standard error bars in Figure 9). This suggests that a significant
fraction of the observed resistance originates from the tip-to-
molecule contact, an observation at odds with the conclusion
that R ) 0.5. Further systematic studies of the dependence of
the resistance on molecular structure are needed to elucidate
this point.
(15) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M.
Science 1997, 278, 252-254.
(
16) Lindsay, S. M.; Sankey, O. F.; Li, Y.; Herbst, C. J. Phys. Chem.
990, 94, 4655-4660.
17) Durig, U.; Zuger, O.; Michel, B.; Haussling, L.; Ringsdorf, H. Phys.
ReV. 1993, B48, 1711-1717.
18) Joachim, C.; Gimzewski, J. K.; Schlittler, R. R.; Chavy, C. Phys.
1
(
(
ReV. Lett. 1995, 74, 2102-2105.
(19) Anselmetti, D.; Baratoff, A.; Guntherodt, H. J.; Gerber, C.; Michel,
B.; Rohrer, H. J. Vac. Sci. Technol. 1994, B12, 1677-1680.
(
20) Gust, D.; Moore, T. A.; Moore, A. L.; Liddell, P. A. Methods
Enzymol. 1992, 213, 87-100.
21) Wandlowski, T.; Lampner, D.; Lindsay, S. M. J. Electroanal. Chem.
Conclusions
(
Carotenoids are excellent conductors of electrons when
compared with saturated hydrocarbons, facilitating measure-
ments of the electrical properties of individual molecules in an
insulating matrix. Reproducible current-voltage data are ob-
tained over a range of (1V when the samples are held in an
environment that is free of moisture and molecular oxygen. To
a first approximation, the molecules act as ohmic resistors,
implying that half of the applied potential appears at the
molecular orbital. This behavior has been observed in another
molecular system, and it may therefore be characteristic of some
1996, 404, 215-226.
(22) DeRose, J. A.; Lampner, D. B.; Lindsay, S. M. J. Vac. Sci. Technol.
1
993, A11, 776-780.
23) McDermott, C. A.; McDermott, M. T.; Green, J. B.; Porter, M. D.
J. Phys. Chem. 1995, 99, 9, 13257-13267.
(
(24) Poirier, G. E.; Tarlov, M. J. Langmuir 1994, 10, 0, 2853-2856.
(25) Martin, Y.; Abraham, D. W.; Wickramasinghe, H. K. Appl. Phys.
Lett. 1988, 52, 1103-1105.
26) Carter, M. T.; Rowe, G. K.; Richardson, J. N.; Tender, L. M.;
(
Terrill, R. H.; Murray, R. W. J. Am. Chem. Soc. 1995, 117, 7, 2896-2899.
(27) Landauer, R. Philos. Mag. 1970, 21, 863-867.