698
A. Olbert-Majkut, Z. Mielke / Chemical Physics 324 (2006) 689–698
[15] L. Andrews, J. Mol. Struct. 100 (1983) 281.
The FTIR matrix isolation studies indicate that two
[16] K.G. Tokhadze, N.A. Tkhorzheskaya, J. Mol. Struct. 270 (1992) 351.
[17] K.G. Tokhadze, in: R.J.H. Clark, R.E. Hester (Eds.), Advances in
Spectrocopy, vol. 23, Wiley, New York, 1995, and references therein.
[18] W.A. Herrebout, B.J. Everaert, B.J. van der Veken, M.O. Bulanin, J.
Chem. Phys. 107 (1997) 8886.
[19] D. Mootz, A. Deeg, J. Am. Chem. Soc. 114 (1992) 5887.
[20] M.J. Frisch, J.A. Pople, J.E. Del Bene, J. Chem. Phys. 78 (1983) 4083.
[21] T.H. Tang, Y.P. Cui, Can. J. Chem. 74 (1996) 1162.
[22] H.C. Kang, Chem. Phys. Lett. 254 (1996) 135.
types of complexes are stabilized in the matrixes: the com-
plex involving OHꢀ ꢀ ꢀp interaction (most probably A1
structure) and the complex stabilized by OHꢀ ꢀ ꢀCl bond
(BII or BIII structure). The perturbations of the HON
group vibrations in the HONO complexes with 1,1-DCE
molecule indicate that the trans-HONO isomer forms
slightly stronger complexes than the cis-HONO one. The
ab initio calculations predict ca. 0.1 kcal/mol lower binding
energy for trans-HONO complexes than for cis-HONO
ones; the exception is the BIII complex, for which the cal-
culated difference in binding energies between trans- and
cis-HONO complexes amounts to 0.4 kcal/mol. This
results probably from the higher asymmetry of Clꢀ ꢀ ꢀHꢀ ꢀ ꢀCl
interaction in cis-HONO complex as compared with the
complex formed by trans-HONO. According to the topo-
logical analysis of the charge densities and the Laplacians,
in cis-HONO complex BIII the interaction of OH group
with one Cl atom is twice as strong as with the other Cl
atom whereas in the corresponding trans-HONO structure
the discrepancy between these values does not exceed 40%.
[23] K.C. Lopes, F.S. Pereira, M.N. Ramos, R.C.M. De Arauno,
Spectrochim. Acta A 57 (2001) 1339.
[24] A. Engdahl, B. Nelander, Chem. Phys. Lett. 113 (1985) 49.
[25] A. Engdahl, B. Nelander, J. Phys. Chem. 92 (1988) 5642.
[26] P. Tarakeshwar, H.S. Choi, S.J. Lee, J. Chem. Phys. 111 (1999) 5838.
[27] Z. Mielke, L. Schriver-Mazzuoli, A. Schriver, J. Phys. Chem. A 101
(1997) 4560.
[28] M. Krajewska, Z. Mielke, K.G. Tokhadze, J. Mol. Struct. 404 (1997)
47.
[29] L. Andrews, G.L. Johnson, B.J. Kelsall, J. Phys. Chem. 86 (1982)
3374.
[30] R.Y. Li, Z.R. Li, D. Wu, Y. Li, W. Chen, C.C. Sun, J. Chem. Phys.
121 (2004) 8775.
[31] Z. Mielke, K.G. Tokhadze, Z. Latajka, E. Ratajczak, J. Phys. Chem.
100 (1996) 539.
[32] M.J. Frish, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb,
J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E.
Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels,
K.N. Kudin, M. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J.
Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K.
Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslow-
ski, J.V. Otriz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, M. Gomperts, R.L. Martin, D.J. Fox, T.
Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challa-
combe, P.M.W. Gill, B. Johnson, W. Chen, M.M. Wong, J.L.
Andres, C. Gonzales, M. Head-Gordon, E.S. Replogle, J.A. Pople,
Gaussian 98, Revision A.9, Gaussian Inc., Pittsburgh, PA, 1998.
[33] S.F. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553.
[34] R.F.W. Bader, Atoms in Molecules, a Quantum Theory, Oxford
Science Publication/Clarendon Press, London, 1990.
[35] Z. Mielke, Z. Latajka, A. Olbert-Majkut, R. Wieczorek, J. Phys.
Chem. 104 (2000) 3746.
Acknowledgement
A.O-M gratefully acknowledges a grant of computer
time from the Wroclaw Center for Networking and Super-
computing, and thanks the Foundation for Polish Science
for financial support.
References
[1] S. Furutaka, S. Ikawa, J. Chem. Phys. 117 (2002) 751.
[2] P.W. Fowler, A.C. Legon, J.M.A. Thumwood, E.R. Waclawik,
Chord. Chem. Rev. 197 (2000) 231.
[3] P.D. Aldrich, A.C. Legon, W.H.J. Flygare, J. Chem. Phys. 75 (1981)
2126.
[4] S.G. Kukolich, P.D. Aldrich, J. Chem. Phys. 78 (1983) 3552.
[5] A.C. Legon, D.J. Millen, Faraday Discuss. 73 (1982) 71.
[6] A.C. Legon, Chem. Soc. Rev. 19 (1990) 1971.
[7] J.A. Shea, W.H. Flygare, J. Chem. Phys. 76 (1982) 4857.
[8] W.G. Read, W.H. Flygare, J. Chem. Phys. 76 (1982) 2238.
[9] B. Mikulskiene, A. Gruodis, V. Sablinskas, B. Nelander, J. Mol.
Struct. 215 (2001) 563.
[36] H.E. Cortland, G.C. Pimentel, J. Phys. Chem. 90 (1986) 5485.
[37] Y. Haas, U. Samuni, in: G. Wancock, R. Compton (Eds.), Research
in Chemical Kinetics, Blackwell Science, Oxford, 1998.
[38] L. Schriver-Mazzuoli, A. Schriver, M. Wierzejewska-Hnat, Chem.
Phys. 199 (1995) 227.
[39] L. Nord, J. Mol. Struct. 96 (1982) 19.
[40] M. Wierzejewska, Z. Mielke, R. Wieczorek, Z. Latajka, 228 (1998)
17.
[10] B. Mikulskiene, A. Gruodis, V. Sablinskas, B. Nelander, Spectro-
chim. Acta A 59 (2003) 733.
[41] M. Krajewska, Z. Latajka, Z. Mielke, K. Mierzwicki, A. Olbert-
Majkut, M. Sałdyka, J. Phys. Chem. B 108 (2004) 15578.
[42] A. Olbert-Majkut, Z. Mielke, in preparation.
[43] The centre of the 3572.6, 3568.5 cmꢁ1 doublet was assumed as the OH
stretching frequency of the trans-HONO monomer.
[11] Z. Kisiel, P.W. Fowler, A.C. Legon, Chem. Phys. Lett. 176 (1991) 446.
[12] A.J. Barnes, J.B. Davis, H.E. Hallam, J.D.R. Howells, J. Chem. Soc.
Faraday Trans. 2 69 (1973) 246.
[13] L. Andrews, G.L. Johnson, B.J. Kelsall, J. Chem. Phys. 76 (1982)
5767.
[44] U. Koch, P.L.A. Popelier, J. Phys. Chem. 99 (1995) 9747.
[14] A.J. Barnes, J. Mol. Struct. 100 (1983) 259.