1206
Journal of the American Ceramic Society—Cuneyt Tas
Vol. 99, No. 4
3E. Boanini, M. Gazzano, and A. Bigi, “Ionic Substitutions in Calcium
31H. L. Jang, et al., “Revisiting Whitlockite, the Second Most Abundant
Biomineral in Bone: Nanocrystal Synthesis in Physiologically Relevant Condi-
tions and Biocompatibility Evaluation,” ACS Nano, 8, 634–41 (2014).
32R. Gopal, C. Calvo, J. Ito, and W. K. Sabine, “Crystal Structure of Syn-
thetic Mg-Whitlockite, Ca18Mg2H2(PO4)14,” Can. J. Chem., 52, 1155–64
(1974).
Phosphates Synthesized at Low Temperature,” Acta Biomater., 6, 1882–94
(2010).
4N. A. Curry and D. W. Jones, “Crystal Structure of Brushite, Calcium
Hydrogen Orthophosphate Dihydrate: A Neutron Diffraction Investigation,”
J. Chem. Soc. A-Inorg. Phys. Theor., 23, 3725–9 (1971).
5M. A. Miller, M. R. Kendall, M. K. Jain, P. R. Larson, A. S. Madden,
and A. C. Tas, “Testing of Brushite (CaHPO4∙2H2O) in Synthetic Biomineral-
ization Solutions and In Situ Crystallization of Brushite Micro-Granules,” J.
Am. Ceram. Soc., 95, 2178–88 (2012).
33B. Dickens, L. W. Schroeder, and W. E. Brown, “Crystallographic Studies
of the Role of Mg as a Stabilizing Impurity in b-Ca3(PO4)2 I. The Crystal
Structure of Pure b-Ca3(PO4)2,” J. Solid State Chem., 10, 232–48 (1974).
34T. Kodaka, K. Debari, and M. Abe, “Hexahedrally Based Crystals in
Human Tooth Enamel,” Caries Res., 26, 69–76 (1992).
6S. Cazalbou, C. Combes, D. Eichert, C. Rey, and M. J. Glimcher, “Poorly
Crystalline Apatites: Evolution and Maturation in Vitro and in Vivo,” J. Bone
Miner. Metab., 22, 310–7 (2004).
35C. Austin, D. Hare, A. L. Rozelle, W. H. Robinson, R. Grimm, and P.
Doble, “Elemental Bio-Imaging of Calcium Phosphate Crystal Deposits in
Knee Samples From Arthritic Patients,” Metallomics, 1, 142–7 (2009).
36C. A. Scotchford, M. Vickers, and S. Y. Ali, “The Isolation and Charac-
terization of Magnesium Whitlockite Crystals From Human Articular Carti-
lage,” Osteoarthr. Cartilage, 3, 79–94 (1995).
7Y. Jin and H. K. Yip, “Supragingival Calculus: Formation and Control,”
Crit. Rev. Oral Biol. Med., 13, 426–41 (2002).
8D. B. Leusmann, “A Classification of Urinary Calculi With Respect to
Their Composition and Micromorphology,” Scand. J. Urol. Nephrol., 25, 141–
50 (1991).
37H. Newesely, “Calcifying Processes Within the Superficial Layers of the
Dental Plaque,” Caries Res., 2, 19–26 (1968).
9A. K. Rosenthal, E. Mattson, C. M. Gohr, and C. J. Hirschmugl, “Charac-
terization of Articular Calcium-Containing Crystals by Synchrotron FTIR,”
Osteoarthr. Cartilage, 16, 1395–402 (2008).
38J. D. Reid and M. E. Andersen, “Medial Calcification (Whitlockite) in the
Aorta,” Atherosclerosis, 101, 213–24 (1993).
10S. V. Dorozhkin and M. Epple, “Biological and Medical Significance of
Calcium Phosphates,” Angew. Chem. Int. Ed., 41, 3130–46 (2002).
11R. Tang, M. Hass, W. Wu, S. Gulde, and G. H. Nancollas, “Constant
Composition Dissolution of Mixed Phases II. Selective Dissolution of Calcium
Phosphates,” J. Coll. Interf. Sci., 260, 379–84 (2003).
39C. H. P’ng, R. Boadle, M. Horton, M. Bilous, and F. Bonar, “Magnesium
Whitlockite of the Aorta,” Pathology, 40, 539–40 (2008).
40R. Lagier and C. A. Baud, “Magnesium Whitlockite, a Calcium Phosphate
Crystal of Special Interest in Pathology,” Pathol. Res. Pract., 199, 329–35
(2003).
12B. Flautre, C. Maynou, J. Lemaitre, P. van Landuyt, and P. Hardouin,
“Bone-Colonization of b-TCP Granules Incorporated in Brushite Cements,” J.
Biomed. Mater. Res., 63B, 413–7 (2002).
41T. Kodaka, A. Hirayama, T. Sano, K. Debari, M. Mayahara, and M.
Nakamura, “Fine Structure and Mineral Components of Primary Calculi in
Some Human Prostates,” J. Electron Microsc., 57, 133–41 (2008).
42M. Daudon, J. C. Dore, P. Jungers, and B. Lacour, “Changes in Stone
Composition According to Age and Gender of Patients: A Multivariate Epi-
demiological Approach,” Urol. Res., 32, 241–7 (2004).
13J. M. Kuemmerle, et al., “Assessment of the Suitability of a New Brushite
Calcium Phosphate Cement for Cranioplasty – An Experimental Study in
Sheep,” J. Cranio Maxill. Surg., 33, 37–44 (2005).
14F. Theiss, et al., “Biocompatibility and Resorption of a Brushite Calcium
Phosphate Cement,” Biomaterials, 26, 4383–94 (2005).
43T. Kodaka, K. Debari, T. Sano, and M. Yamada, “Scanning Electron
Microscopy and Energy-Dispersive X-ray Microanalysis Studies of Several
Human Calculi Containing Calcium Phosphate Crystals,” Scanning Microsc.,
8, 241–57 (1994).
15D. Apelt, et al., “In Vivo Behavior of Three Different Injectable Hydraulic
Calcium Phosphate Cements,” Biomaterials, 25, 1439–51 (2004).
16K. Furutaka, H. Monma, T. Okura, and S. Takahashi, “Characteristic
Reaction Processes in the System Brushite-NaOH Solution,” J. Eur. Ceram.
Soc., 26, 543–7 (2006).
44S. Kraaij, K. H. Karagozoglu, T. Forouzanfar, E. C. I. Veerman, and H.
S. Brand, “Salivary Stones: Symptoms, Aetiology, Biochemical Composition
and Treatment,” Brit. Dent. J., 217, E23 (2014).
17A. C. Tas and S. B. Bhaduri, “Chemical Processing of CaHPO4∙2H2O: Its
Conversion to Hydroxyapatite,” J. Am. Ceram. Soc., 87, 2195–200 (2004).
18S. Mandel and A. C. Tas, ““Brushite (CaHPO4Á2H2O) to Octacalcium
Phosphate (Ca8(HPO4)2(PO4)4Á5H2O) Transformation in DMEM Solutions at
36.5°C,” Mater. Sci. Eng., C, 30, 245–54 (2010).
45A. C. Tas, “Calcium Phosphate Cement Composition and a Method for
the Preparation Thereof”; U.S. Patent No. 6,929,692, August 16, 2005.
46Z. Sheikh, Y. L. Zhang, L. Grover, G. E. Merle, F. Tamimi, and J. Bar-
ralet, “In Vitro Degradation and in Vivo Resorption of Dicalcium Phosphate
Based Grafts,” Acta Biomater., 26, 338–46 (2015).
19M. Kumar, J. Xie, K. Chittur, and C. Riley, “Transformation of Modified
Brushite to Hydroxyapatite in Aqueous Solution: Effects of Potassium Substi-
tution,” Biomaterials, 20, 1389–99 (1999).
47J. Arsic, D. Kaminski, P. Poodt, and E. Vlieg, “Liquid Ordering at the
Brushite-010-Water Interface,” Phys. Rev. B, 69, 245406 (2004).
48R. Z. LeGeros, “Preparation of Octacalcium Phosphate (OCP): A Direct
Fast Method,” Calcif. Tissue Int., 37, 194–7 (1985).
20A. C. Tas, “Electroless Deposition of Brushite (CaHPO4∙2H2O) Crystals
on Ti-6Al-4V at Room Temperature,” Int. J. Mater. Res., 97, 639–44 (2006).
21X. Xiao, H. Yu, Q. Zhu, G. Li, Y. Qu, and R. Gu, “In Vivo Corrosion
Resistance of Ca-P Coating on AZ60 Magnesium Alloy,” J. Bionic Eng., 10,
156–61 (2013).
49M. Iijima, Y. Moriwaki, T. Takagi, and J. Moradian-Oldak, “Effects of
Bovine Amelogenins on the Crystal Morphology of Octacalcium Phosphate in
a Model System of Tooth Enamel Formation,” J. Cryst. Growth, 222, 615–26
(2001).
22A. C. Tas, “Granules of Brushite and Octacalcium Phosphate From Mar-
ble,” J. Am. Ceram. Soc., 94, 3722–6 (2011).
50M. Iijima, H. Kamemizu, N. Wakamatsu, T. Goto, Y. Doi, and Y. Mori-
2-
waki, “Effects of CO3 Ion on the Formation of Octacalcium Phosphate at
23S. L. Rowles, “The Precipitation of Whitlockite From Aqueous Solu-
tions,” B. Soc. Chim. Fr., Suppl. I, 179, 7–802 (1968).
pH 7.4 and 37°C,” J. Cryst. Growth, 135, 229–34 (1994).
51H. A. Krebs, “Chemical Composition of Blood Plasma and Serum,” Annu.
Rev. Biochem., 19, 409–30 (1950).
24C. Frondel, “Whitlockite: A New Calcium Phosphate, Ca3(PO4)2,” Am.
Mineral., 26, 145–52 (1941).
52R. Stulajterova and L. Medvecky, “Effect of Calcium Ions on Transforma-
tion Brushite to Hydroxyapatite in Aqueous Solutions,” Colloid. Surface. A,
316, 104–9 (2008).
25L. H. Fuchs, “Occurrence of Whitlockite in Chondritic Meteorites,”
Science, 137, 425–6 (1962).
26C. P. A. T. Klein, K. de Groot, A. A. Driessen, and H. B. M. van der
Lubbe, “Interaction of Biodegradable b-Whitlockite Ceramics With Bone Tis-
sue: An in Vivo Study,” Biomaterials, 6, 189–92 (1985).
53T. Kodaka, K. Debari, and S. Higashi, “Magnesium-Containing Crystals
in Human Dental Calculus,” J. Electron Microsc., 37, 73–80 (1988).
54H. L. Jang, H. K. Lee, K. Jin, H. Y. Ahn, H. E. Lee, and K. T. Nam,
“Phase Transformation From Hydroxyapatite to the Secondary Bone Mineral,
Whitlockite,” J. Mater. Chem. B, 3, 1342–9 (2015).
27C. A. van Blitterswijk, J. J. Grote, H. K. Koerten, and W. Kuijpers, “The
Biological Performance of Calcium Phosphate Ceramics in an Infected Implan-
tation Site III: Biological Performance of b-Whitlockite in the Noninfected
and Infected Rat Middle Ear,” J. Biomed. Mater. Res., 20, 1197–217 (1986).
28L. M. Ryan, et al., “Cellular Responses to Whitlockite,” Calcif. Tissue
Int., 65, 373–7 (1999).
55L. C. Chow and S. Takagi, “Self-Setting Calcium Phosphate Cements and
Methods for Preparing and Using Them”; U.S. Patent No. 5,525,148, June 11,
1996.
56A. C. Tas, “The Use of Physiological Solutions or Media in Calcium
Phosphate Synthesis and Processing,” Acta Biomater., 10, 1771–92 (2014).
57H. E. L. Madsen, “Influence of Foreign Metal Ions on Crystal Growth
and Morphology of Brushite (CaHPO4Á2H2O) and its Transformation to Octa-
29S. Gomes, G. Renaudin, E. Jallot, and J. M. Nedelec, “Structural Char-
acterization and Biological Fluid Interaction of Sol-gel-Derived Mg-Substi-
tuted Biphasic Calcium Phosphate Ceramics,” Appl. Mater. Interf., 1, 505–13
(2009).
calcium Phosphate and Apatite,” J. Cryst. Growth, 310, 2602–12 (2008).
h
30E. E. Jay, et al., “Predicted Energies and Structures of b-Ca3(PO4)2,” J.
Solid State Chem., 183, 2261–7 (2010).