A R T I C L E S
Duncan et al.
Scheme 1. Design Strategy of Highly Conjugated Hybrid
Bis(terpyridyl)metal(II)-(Porphinato)zinc(II) MPZnn Chromophores
(n ) Total Number of Conjugated PZn Units)a
mophores, PZn and (terpyridyl)metal(II) moieties possess a
characteristic ethyne-bridged porphyrin meso-carbon to terpy-
ridyl 4′-carbon linkage topology (Scheme 1), which has been
shown to facilitate efficient excited-state electronic communica-
tion between the subunits. Previous work on ethyne-bridged
PZnn oligomers that feature a meso-to-meso linkage motif
demonstrates that these compounds manifest low-energy Q-state
derived π-π* excited states that are polarized exclusively along
the long molecular axis25,26,36,37,39-41,44-46 and exhibit intensely
absorbing S1 f Sn transitions that extend deep into the NIR
energy regime [compound, ([λmax(S1 f Sn)], full width at half-
maximum, fwhm): PZn2 (980 nm, 656 cm-1),39 PZn3 (1120
nm, 750 cm-1),41 and PZn5 (1325 nm, 1980 cm-1)]41 in THF
solvent. Notably, the excited states of these species (i) relax to
their respective electronic ground states on nanosecond (ns) time
scales, (ii) display large fluorescence quantum yields, and (iii)
manifest modest-to-minimal triplet yields that decrease with
increasing conjugation length.41 In contrast, studies that probe
the relaxation dynamics of the low-lying excited states of MPZn
species show that, within 200 fs following photoexcitation, the
initially prepared excited state relaxes to a highly polarized
charge-separated (CS) T1 state43 that differs in many respects
from the MLCT state of conventional (polypyridyl)metal(II)
species;47-51 this MPZn CS triplet excited state relaxes non-
radiatively via charge recombination dynamics on timescales
ranging from 0.86 µs (OsPZn) to 44 µs (RuPZn).43 While the
primary excited-state relaxation pathway of MPZn species is
related to that for charge-recombination (CR) deactivation of
classical (polypyridyl)metal(II) charge-transfer (CT) states,
because MPZn T1 f Tn manifold transitions involve states
having substantial CS character, these absorptions feature
considerable PZn π-system oscillator strength. MPZn species
thus exhibit intense NIR excited-state absorption bands, with
large excited-state molar extinction coefficients ꢀe[λmax(T1 f
Tn)] ranging from ∼30 000 to ∼100 000 M-1 cm-1, and impres-
sive bandwidths [compound, ([λmax(T1 f Tn)], fwhm): RuPZn
(884 nm, ∼2730 cm-1); OsPZn (964 nm, >2015 cm-1).43
This work motivated the engineering of a new class of
compounds (MPZnn chromophores, Scheme 1) that exhibits the
combined properties of these two benchmark, highly conjugated
multichromophore motifs: (i) the enormous NIR T1 f Tn
transition intensities; (ii) µs excited-state relaxation dynamics
of thermally relaxed MPZn excited states, with (iii) the tunable
excited-state absorption manifolds characteristic of PZnn oli-
gomers. Chart 1 highlights RuPZn2 and OsPZn2 structures,
while Chart 2 describes related PyrmRuPZnn compounds that
feature pyrrolidinyl (Pyr) substituents that modulate terpyridyl
ligand π* energy levels and diminish the E1/2(M3+/2+) value of
the bis(terpyridyl)metal(II) center. Herein we discuss the
a R ) 2′,6′-bis(3,3-dimethyl-1-butyloxy)phenyl.
which utilize heavy atoms), excited triplet-state molar absorp-
tivities beyond 800 nm are often small,21 due to challenges
associated with engineering extensive excited-triplet wave
function delocalization in π-conjugated systems.25-35 For these
reasons, the realization of OPL chromophores which are both
optically active in the NIR and possess long-lived, strongly
absorbing excited-states remains an unmet molecular engineer-
ing goal.
This laboratory has described the design, synthesis, spectros-
copy, and excited-state dynamics of two heretofore unrelated
series of highly conjugated chromophores (Scheme 1): (i)
multimeric (porphinato)zinc(II) arrays that feature ethyne-
bridged macrocycle-to-macrocycle linkage motifs (PZnn struc-
tures);25-28,36-41 (ii) hybrid MPZn chromophores incorporating
ethyne-linked (porphinato)zinc(II) (PZn) and bis(terpyridyl)-
metal(II) (M; metal ) Ru, Os) subunits.42,43 In MPZn chro-
(21) Turro, N. J. Modern Molecular Photochemistry; University Science
Books: Sausolito, CA, 1991.
(22) Caspar, J. V.; Kober, E. M.; Sullivan, B. P.; Meyer, T. J. J. Am. Chem.
Soc. 1982, 104, 630-632.
(23) Caspar, J. V.; Meyer, T. J. J. Phys. Chem. 1983, 87, 952-957.
(24) Englman, R.; Jortner, J. Mol. Phys. 1970, 18, 145.
(25) Angiolillo, P. J.; Lin, V. S.-Y.; Vanderkooi, J. M.; Therien, M. J. J. Am.
Chem. Soc. 1995, 117, 12514-12527.
(26) Shediac, R.; Gray, M. H. B.; Uyeda, H. T.; Johnson, R. C.; Hupp, J. T.;
Angiolillo, P. J.; Therien, M. J. J. Am. Chem. Soc. 2000, 122, 7017-7033.
(27) Angiolillo, P. J.; Susumu, K.; Uyeda, H. T.; Lin, V. S.-Y.; Shediac, R.;
Therien, M. J. Synth. Met. 2001, 116, 247-253.
(28) Angiolillo, P. J.; Uyeda, H. T.; Duncan, T. V.; Therien, M. J. J. Phys.
Chem. B 2004, 108, 11893-11903.
(29) Piet, J. J.; Taylor, P. N.; Anderson, H. L.; Osuka, A.; Warman, J. M. J.
Am. Chem. Soc. 2000, 122, 1749-1757.
(30) Piet, J. J.; Taylor, P. N.; Wegewijs, B. R.; Anderson, H. L.; Osuka, A.;
Warman, J. M. J. Phys. Chem. B 2001, 105, 97-104.
(31) Swanson, L. S.; Lane, P. A.; Shinar, J.; Wudl, F. Phys. ReV. B 1991, 44,
10617-10621.
(32) Swanson, L. S.; Shinar, J.; Yoshino, K. Phys. ReV. Lett. 1990, 65, 1140-
1143.
(33) Bennati, M.; Grupp, A.; Mehring, M.; Ba¨uerle, P. J. Phys. Chem. 1996,
100, 2849-2853.
(34) Beljonne, D.; Cornil, J.; Friend, R. H.; Janssen, R. A. J.; Bre´das, J. L. J.
Am. Chem. Soc. 1996, 118, 6453-6461.
(43) Duncan, T. V.; Rubtsov, I. V.; Uyeda, H. T.; Therien, M. J. J. Am. Chem.
Soc. 2004, 126, 9474-9475.
(35) List, E. J. W.; Partee, J.; Shinar, J.; Scherf, U.; Mu¨llen, K.; Zojer, E.;
Petritsch, K.; Leising, G.; Graupner, W. Phys. ReV. B 2000, 61, 10807-
10814.
(44) Kumble, R.; Palese, S.; Lin, V. S.-Y.; Therien, M. J.; Hochstrasser, R. M.
J. Am. Chem. Soc. 1998, 120, 11489-11498.
(45) Fletcher, J. T.; Therien, M. J. Inorg. Chem. 2002, 41, 331-341.
(46) Duncan, T. V.; Wu, S. P.; Therien, M. J. J. Am. Chem. Soc. 2006, 128,
10423-10435.
(36) Lin, V. S.-Y.; Di Magno, S. G.; Therien, M. J. Science 1994, 264, 1105-
1111.
(37) Lin, V. S.-Y.; Therien, M. J. Chem.sEur. J. 1995, 1, 645-651.
(38) Priyadarshy, S.; Therien, M. J.; Beratan, D. N. J. Am. Chem. Soc. 1996,
118, 1504-1510.
(47) Meyer, T. J. Pure Appl. Chem. 1986, 58, 1193-1206.
(48) Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von
Zelewsky, A. Coord. Chem. ReV. 1988, 84, 85-277.
(49) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.; Coudret, C.;
Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. ReV. 1994,
94, 993-1019.
(39) Rubtsov, I. V.; Susumu, K.; Rubtsov, G. I.; Therien, M. J. J. Am. Chem.
Soc. 2003, 125, 2687-2696.
(40) Susumu, K.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 8550-8552.
(41) Duncan, T. V.; Susumu, K.; Sinks, L. E.; Therien, M. J. J. Am. Chem.
Soc. 2006, 128, 9000-9001.
(50) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Thompson, A.
M. W. C. Inorg. Chem. 1995, 34, 2759-2767.
(51) Balzani, V.; Bergamini, G.; Marchioni, F.; Ceroni, P. Coord. Chem. ReV.
2006, 250, 1254-1266.
(42) Uyeda, H. T.; Zhao, Y. X.; Wostyn, K.; Asselberghs, I.; Clays, K.; Persoons,
A.; Therien, M. J. J. Am. Chem. Soc. 2002, 124, 13806-13813.
9
9692 J. AM. CHEM. SOC. VOL. 129, NO. 31, 2007