C O M M U N I C A T I O N S
Science, Okazaki, Japan is greatly acknowledged. This work was
supported by a Grant-in-Aid for Scientific Research on Priority
Areas “Advanced Molecular Transformations of Carbon Resources”
from the Ministry of Education, Culture, Sports, Science and
Technology, Japan.
Supporting Information Available: Complete ref 6; detailed
experimental procedure; Cartesian coordinates of the calculation model.
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
(1) (a) Soloshonok, V. A.; Mikami, K.; Yamazaki, T.; Welch, J. T.; Honek,
J. F. ACS Symp. Ser. 2006, 949. (b) Uneyama, K. Organofluorine
Chemistry; Blackwell: Oxford, England, 2006. (c) Shimizu, M.; Hiyama,
T. Angew. Chem., Int. Ed. 2005, 44, 214-231. (d) Kirsch, P. Modern
Fluoroorganic Chemistry; Wiley-VCH: Weinheim, Germany, 2004. (e)
Ma, J.-A.; Cahard, D. Chem. ReV. 2004, 104, 6119-6146. (f) Mikami,
K.; Itoh, Y.; Yamanaka, M. Chem. ReV. 2004, 104, 1-16. (g) Neilson,
A. H., Ed. Organofluorines; Springer-Verlag: Berlin, 2002. (h) Hiyama,
T.; Kanie, K.; Kusumoto, T.; Morizawa, Y.; Shimizu, M. Organofluorine
Compounds; Springer-Verlag: Berlin, 2000. (i) Ramachandran, P. V. ACS
Symp. Ser. 2000, 746. (j) Chambers, R. D., Ed. Organofluorine Chemistry;
Springer: Berlin, 1997. (k) Smart, B. E., Ed. Chem. ReV. 1996, 96, No.
5. (l) Banks, R. E., Smart, B. E., Tatlow, J. C., Eds. Organofluorine
Chemistry: Principles and Commercial Applications; Plenum Press: New
York. 1994. (m) Olah, G. A., Prakash, G. K. S., Chambers, R. D., Eds.
Synthetic Fluorine Chemistry; Wiley: New York, 1992.
Figure 2. The change of products with time progress.
Scheme 2
(2) (a) Burton. D. J.; Lu, L. Topics in Current Chemistry; Chambers, R. D.,
Ed.; Springer-Verlag: Berlin, 1997, Vol. 193, pp 45-90. (b) Burton. D.
J.; Yang, Z. Y. Tetrahedron 1992, 48, 189-275. (c) Knochel, P.; Dohle,
W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.;
Vu, V. A. Angew. Chem., Int. Ed. 2003, 42, 4302-4320.
(3) Reviews on tandem (domino) reactions: Ziegler, F. E. In ComprehensiVe
Organic Synthesis, Vol. 6, Trost, B. M., Fleming, I., Eds.; Pergamon:
New York, 1991; p 875. Tietze, L. F. Chem. ReV. 1996, 96, 115. Wender,
P. A., Ed. Chem. ReV. 1996, 96. Nakai, T.; Mikami, K. Kagaku no Ryoiki
1982, 36, 661; Chem. Abstr. 1982, 96, 16001.
Table 1. Tandem Reductive Perfluoroalkylation of Esters.
(4) (a) Tandem reductive amination was quite recently reported: Storer, R.
I.; Carrera, D. E.; Ni, Y.; MacMillan, D. W. C. J. Am. Chem. Soc. 2006,
128, 84. (b) Review on asymmetric reductive amination: Tararov, V. I.;
Borner, A. Synlett 2005, 203. (c) Tandem reduction-reductive alkylation
of azido sugars: Chen, L.; Wiemer, D. F. Tetrahedron Lett. 2002, 43,
2705. (d) Tandem alkylative amination of non-enolizable aldehydes with
alkyl tris(dialkylamino)titanium reagents: Schiess, M.; Seebach, D. HelV.
Chim. Acta 1982, 65, 2598-2602.
entry
R1
R2
Rf
yield [%]a
1
2
3
4
5
6
7c
8
9
10c
11c
Ph-
Ph-
Ph-
Ph-
Me
Me
Me
Ph
Me
Me
Me
Me
Me
Me
Me
C4F9
C3F7
C6F13
C4F9
C4F9
C4F9
C4F9
C4F9
C4F9
C4F9
C4F9
quantb
76
87
88b
84
72
94
99
73
4-CF3-C4H4-
4-MeO-C4H4-
1-Naph-
2-Naph-
(E) -PhCHdCH-
Bn
(5) Itoh, Y.; Yamanaka, M.; Mikami, K. J. Am. Chem. Soc. 2004, 126, 13174-
13175.
(6) Frisch, M. J.; et al. Gaussian 03, revision C.02; Gaussian, Inc.: Wall-
ingford, CT, 2004.
(7) For Ti- and Li-enolate species, B3LYP/631LAN (LANL2DZ for Ti
6-31G* for others) was adopted. For Ti-ate-enolate, B3LYP/631+LAN
(LANL2DZ for Ti, 6-31+G* for others) was adopted. (a) Hay, P. J.; Wadt,
W. R. J. Chem. Phys. 1985, 82, 270-283. (b) Wadt, W. R.; Hay, P. J. J.
Chem. Phys. 1985, 82, 284-298. (c) Hay, P. J.; Wadt, W. R. J. Chem.
Phys. 1985, 82, 299-310. (d) Hehre, W. J.; Radom, L.; von Rague´
Schleyer, P.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley: New
York, 1986 and references cited therein.
41
51
nC7H15
a Isolated yield. b Determined by 1H NMR. c Reaction run using 6.0 equiv
of C4F9Ti(OiPr)4MgBr for 20 h.
(8) Donation of the lone electron pair of the oxygen to the empty d-orbital of
Ti causes the linear multiple bonding (see ref 5).
alkylation products were obtained though in moderate yields (41%
and 51%, respectively) (entries 10 and 11).
(9) McBee, E. T.; Roberts, C. W.; Meiners, A. F. J. Am. Chem. Soc. 1957,
79, 335-337.
(10) (a) Seebach, D.; Weidmann, B.; Widler, L. In Modern Synthetic Methods;
Scheffold, R., Ed.; Verlag: Frankfurt, Germany, 1983; Vol. 3, pp 217-
354. (b) Reetz, M. T. Organotitanium Reagents in Organic Synthesis;
Springer-Verlag: Berlin, 1986.
(11) Alkyl titanate-type reagents prepared from RMgBr (R ) methyl or ethyl)
and Ti(OiPr)4 did not give any adduct of benzoate at room temperature
for 3 h.
(12) Gassman, P. G.; O’Reilly, N. J. J. Org. Chem. 1987, 52, 2481-2490.
(13) This reaction mechanism can also be supported by the formation of the
perfluoroalkyl adduct of acetone which is derived from isopropoxide.
(14) When aluminium tri(iso-propoxide) was used for the reaction of perfluo-
roalkyl metal-ate reagent with aldehyde, no perfluoroalkylation took place.
We have reported the generation of stable perfluoroalkyl titanate-
type reagents and the new type of reaction, tandem reductive
perfluoroalkylation of esters to give fluoroalkyl sec-alcohols. Further
application to the “enantioselective” synthesis could provide highly
enantio-enriched organofluorine compounds with high physiological
activity and remarkable physical properties.
Acknowledgment. Dedicated to Prof. Frederick E. Ziegler for
his great contribution to synthetic organic chemistry. Generous
allotment of computational time from the Institute for Molecular
JA074642Z
9
J. AM. CHEM. SOC. VOL. 129, NO. 38, 2007 11687