124 Journal of Medicinal Chemistry, 2009, Vol. 52, No. 1
Thompson et al.
inhibits phorbol myristate acetate-induced matrix metalloproteinase-9
expression by inhibiting nuclear factor kappa B transcriptional activity.
Cancer Res. 2003, 63, 3430–3434.
M. F.; Sanchez-Reus, M. I.; Andres, D.; Cascales, M.; Benedi, J.
Neuroprotective effect of fraxetin and myricetin against rotenone-
induced apoptosis in neuroblastoma cells. Brain Res. 2004, 1009, 9–
16.
(24) Lee, S. H.; Youk, E. S.; Lee, H. J.; Kho, Y. H.; Kim, H. M.; Kim,
S. U. Dykellic acid inhibits drug-induced caspase-3-like protease
activation. Biochem. Biophys. Res. Commun. 2003, 302, 539–544.
(25) (a) Maryanoff, B. E.; Reitz, A. B. The Wittig olefination reaction and
modifications involving phosphoryl-stabilized carbanions. Stereochem-
istry, mechanism, and selected synthetic aspects. Chem. ReV. 1989,
89, 863–927. (b) Still, W. C.; Gennari, C. Direct synthesis of
Z-unsaturated esters. A useful modification of the Horner-Emmons
olefination. Tetrahedron Lett. 1983, 24, 4405–4408.
(26) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Recent advances in the
Baylis-Hillman reaction and applications. Chem. ReV. 2003, 103, 811–
892.
(27) Drewes, S. E.; Roos, G. H. P. Synthetic potential of the tertiary-amine-
catalysed reaction of activated vinyl carbanions with aldehydes.
Tetrahedron 1988, 44, 4653–4670.
(41) (a) Kapiszewska, M.; Cierniak, A.; Elas, M.; Lankoff, A. Lifespan of
etoposide-treated human neutrophils is affected by antioxidant ability
of quercetin. Toxicol. in Vitro 2007, 21, 1020–1030. (b) Rusovici, R.;
Ghaleb, A.; Shim, H.; Yang, V. W.; Yun, C. C. Lysophosphatidic
acid prevents apoptosis of Caco-2 colon cancer cells via activation of
mitogen-activated protein kinase and phosphorylation of Bad. Biochim
Biophys Acta 2007, 1770, 1194–1203. (c) Salido, M.; Gonzalez, J. L.;
Vilches, J. Loss of mitochondrial membrane potential is inhibited by
bombesin in etoposide-induced apoptosis in PC-3 prostate carcinoma
cells. Mol. Cancer Ther. 2007, 6, 1292–1299.
(42) (a) Bechoua, S.; Dubois, M.; Dominguez, Z.; Goncalves, A.; Nemoz,
G.; Lagarde, M.; Prigent, A. F. Protective effect of docosahexaenoic
acid against hydrogen peroxide-induced oxidative stress in human
lymphocytes. Biochem. Pharmacol. 1999, 57, 1021–1030. (b) Fatokun,
A. A.; Stone, T. W.; Smith, R. A. Hydrogen peroxide-induced
oxidative stress in MC3T3-E1 cells: the effects of glutamate and
protection by purines. Bone 2006, 39, 542–551.
(28) Hoffmann, H. M. R.; Rabe, J. Preparation of 2-(1-hydroxyalkyl)acrylic
esters; simple three-step synthesis of mikanecic acid. Angew. Chem.,
Int. Ed. Engl. 1983, 22, 795–796.
(43) Lee, M. W.; Kim, W. J.; Beardsley, D. I.; Brown, K. D. N-Methyl-
N′-nitro-N-nitrosoguanidine activates multiple cell death mechanisms
in human fibroblasts. DNA Cell Biol. 2007, 26, 683–694.
(44) Yu, S. W.; Wang, H.; Poitras, M. F.; Coombs, C.; Bowers, W. J.;
Federoff, H. J.; Poirier, G. G.; Dawson, T. M.; Dawson, V. L.
Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by
apoptosis-inducing factor. Science 2002, 297, 259–263.
(29) (a) Faltin, C.; Fleming, E. M.; Connon, S. J. Acrylamide in the Baylis-
Hillman reaction: expanded reaction scope and the unexpected
superiority of DABCO over more basic tertiary amine catalysts. J.
Org. Chem. 2004, 69, 6496–6499. (b) Wei, G.; Weiwei, W.; Ningjuan,
F.; Zhengang, W.; Chizhong, X. Synthesis of alpha-substituted N-aryl
acrylamide derivatives through Baylis-Hillman reaction. Synth. Com-
mun. 2005, 35, 1239–1251.
(30) Singh, V.; Yadav, G. P.; Maulik, P. R.; Batra, S. Synthesis of
substituted 3-methylene-2-pyridones from Baylis-Hillman derivatives
and its application for the generation of 2-pyridone substituted
spiroisoxazolines. Tetrahedron 2008, 64, 2979–2991.
(31) (a) Areces, P. C.; Carrasco, E.; Mancha, A.; Plumet, J. Tandem
ꢀ-elimination-Morita-Baylis-Hillman reaction in R,ꢀ-unsaturated
sugar aldehydes. Synthesis 2006, 6, 946–948. (b) Drewes, S. E.; Emslie,
N. D.; Khan, A. A.; Roos, G. H. P. 1,2-Addition of activated vinyl
carbanions to, ꢀ-unsaturated carbonyls. Synth. Commun. 1989, 19, 959–
964. (c) Heerden, F. R. v.; Huyser, J. J.; Holzapfel, C. W. Preparation
of multifunctional stereodefined dienes. Synth. Commun. 1994, 24,
2863–2872. (d) Hsu, J.-C.; Yen, Y.-H.; Chu, Y.-H. Baylis-Hillman
reaction in [bdmim][PF6] ionic liquid. Tetrahedron Lett. 2004, 45,
4673–4676.
(32) Zapf, C. W.; Harrison, B. A.; Drahl, C.; Sorensen, E. J. A Diels-
Alder macrocyclization enables an efficient asymmetric synthesis of
the antibacterial natural product abyssomicin C. Angew. Chem., Int.
Ed. 2005, 44, 6533–6537.
(33) Williams, C. M.; Mander, L. N. Chromatography with silver nitrate.
Tetrahedron 2001, 57, 425–447.
(34) Dess, D. B.; Martin, J. C. Readily accessible 12-I-5 oxidant for the
conversion of primary and secondary alcohols to aldehydes and
ketones. J. Org. Chem. 1983, 43, 4155–4156.
(35) Bal, B. S.; Childers, W. E.; Pinnick, H. W. Oxidation of [alpha],[beta]-
unsaturated aldehydes. Tetrahedron 1981, 37, 2091–2096.
(36) Demidenko, Z. N.; Vivo, C.; Halicka, H. D.; Li, C. J.; Bhalla, K.;
Broude, E. V.; Blagosklonny, M. V. Pharmacological induction of
Hsp70 protects apoptosis-prone cells from doxorubicin: comparison
with caspase-inhibitor- and cycle-arrest-mediated cytoprotection. Cell
Death Differ. 2006, 13, 1434–1441.
(37) Kanupriya; Prasad, D.; Ram, M. S.; Kumar, R.; Sawhney, R. C.;
Sharma, S. K.; Ilavazhagan, G.; Kumar, D.; Banerjee, P. K. Cytopro-
tective and antioxidant activity of Rhodiola imbricata against tert-
butyl hydroperoxide induced oxidative injury in U-937 human
macrophages. Mol. Cell. Biochem. 2005, 275, 1–6.
(38) (a) Sestili, P.; Martinelli, C.; Bravi, G.; Piccoli, G.; Curci, R.; Battistelli,
M.; Falcieri, E.; Agostini, D.; Gioacchini, A. M.; Stocchi, V. Creatine
supplementation affords cytoprotection in oxidatively injured cultured
mammalian cells via direct antioxidant activity. Free Radical Biol.
Med. 2006, 40, 837–849. (b) Young, J.; Wahle, K. W.; Boyle, S. P.
Cytoprotective effects of phenolic antioxidants and essential fatty acids
in human blood monocyte and neuroblastoma cell lines: surrogates
for neurological damage in vivo. Prostaglandins, Leukotrienes Essent.
Fatty Acids 2008, 78, 45–59.
(45) (a) Hengartner, M. O. The biochemistry of apoptosis. Nature 2000,
407, 770–776. (b) Taylor, R. C.; Cullen, S. P.; Martin, S. J. Apoptosis:
controlled demolition at the cellular level. Nat. ReV. Mol. Cell Biol.
2008, 9, 231–241.
(46) (a) Riedl, S. J.; Shi, Y. Molecular mechanisms of caspase regulation
during apoptosis. Nat. ReV. Mol. Cell Biol. 2004, 5, 897–907. (b)
Stennicke, H. R.; Jurgensmeier, J. M.; Shin, H.; Deveraux, Q.; Wolf,
B. B.; Yang, X.; Zhou, Q.; Ellerby, H. M.; Ellerby, L. M.; Bredesen,
D.; Green, D. R.; Reed, J. C.; Froelich, C. J.; Salvesen, G. S. Pro-
caspase-3 is a major physiologic target of caspase-8. J. Biol. Chem.
1998, 273, 27084–27090.
(47) (a) Benjamin, C. W.; Hiebsch, R. R.; Jones, D. A. Caspase activation
in MCF7 cells responding to etoposide treatment. Mol. Pharmacol.
1998, 53, 446–450. (b) Kim, Y. M.; Chung, H. T.; Kim, S. S.; Han,
J. A.; Yoo, Y. M.; Kim, K. M.; Lee, G. H.; Yun, H. Y.; Green, A.;
Li, J.; Simmons, R. L.; Billiar, T. R. Nitric oxide protects PC12 cells
from serum deprivation-induced apoptosis by cGMP-dependent inhibi-
tion of caspase signaling. J. Neurosci. 1999, 19, 6740–6747.
(48) (a) Goode, D. R.; Sharma, A. K.; Hergenrother, P. J. Using peptidic
inhibitors to systematically probe the S1′ site of caspase-3 and caspase-
7. Org. Lett. 2005, 7, 3529–3532. (b) Micale, N.; Vairagoundar, R.;
Yakovlev, A. G.; Kozikowski, A. P. Design and synthesis of a potent
and selective peptidomimetic inhibitor of caspase-3. J. Med. Chem.
2004, 47, 6455–6458. (c) Yoshimori, A.; Sakai, J.; Sunaga, S.;
Kobayashi, T.; Takahashi, S.; Okita, N.; Takasawa, R.; Tanuma, S.
Structural and functional definition of the specificity of a novel
caspase-3 inhibitor, Ac-DNLD-CHO. BMC Pharmacol. 2007, 7
8.
(49) (a) Choong, I. C.; Lew, W.; Lee, D.; Pham, P.; Burdett, M. T.; Lam,
J. W.; Wiesmann, C.; Luong, T. N.; Fahr, B.; DeLano, W. L.;
McDowell, R. S.; Allen, D. A.; Erlanson, D. A.; Gordon, E. M.;
O’Brien, T. Identification of potent and selective small-molecule
inhibitors of caspase-3 through the use of extended tethering and
structure-based drug design. J. Med. Chem. 2002, 45, 5005–5022. (b)
Chu, W.; Rothfuss, J.; d’Avignon, A.; Zeng, C.; Zhou, D.; Hotchkiss,
R. S.; Mach, R. H. Isatin sulfonamide analogs containing a Michael
addition acceptor: a new class of caspase 3/7 inhibitors. J. Med. Chem.
2007, 50, 3751–3755. (c) Kravchenko, D. V.; Kuzovkova, Y. A.; Kysil,
V. M.; Tkachenko, S. E.; Maliarchouk, S.; Okun, I. M.; Balakin, K. V.;
Ivachtchenko, A. V. Synthesis and structure-activity relationship of
4-substituted 2-(2-acetyloxyethyl)-8-(morpholine-4-sulfonyl)pyrrolo[3,4-
c]quinoline-1,3- diones as potent caspase-3 inhibitors. J. Med. Chem.
2005, 48, 3680–3683.
(50) (a) Smith, G. K.; Barrett, D. G.; Blackburn, K.; Cory, M.; Dallas,
W. S.; Davis, R.; Hassler, D.; McConnell, R.; Moyer, M.; Weaver,
K. Expression, preparation, and high-throughput screening of caspase-
8: discovery of redox-based and steroid diacid inhibition. Arch.
Biochem. Biophys. 2002, 399, 195–205. (b) Talanian, R. V.; Quinlan,
C.; Trautz, S.; Hackett, M. C.; Mankovich, J. A.; Banach, D.; Ghayur,
T.; Brady, K. D.; Wong, W. W. Substrate specificities of caspase
family proteases. J. Biol. Chem. 1997, 272, 9677–9682.
(51) (a) Gomes, A.; Fernandes, E.; Lima, J. L. Fluorescence probes used
for detection of reactive oxygen species. J. Biochem. Biophys. Methods
2005, 65, 45–80. (b) Li, L.; Jiang, L.; Geng, C.; Cao, J.; Zhong, L.
The role of oxidative stress in acrolein-induced DNA damage in
(39) Lee, J.; Huang, M. S.; Yang, I. C.; Lai, T. C.; Wang, J. L.; Pang,
V. F.; Hsiao, M.; Kuo, M. Y. Essential roles of caspases and their
upstream regulators in rotenone-induced apoptosis. Biochem. Biophys.
Res. Commun. 2008, 371, 33–38.
(40) (a) Egea, J.; Rosa, A. O.; Cuadrado, A.; Garcia, A. G.; Lopez, M. G.
Nicotinic receptor activation by epibatidine induces heme oxygenase-1
and protects chromaffin cells against oxidative stress. J. Neurochem.
2007, 102, 1842–1852. (b) Imamura, K.; Takeshima, T.; Kashiwaya,
Y.; Nakaso, K.; Nakashima, K. D-beta-Hydroxybutyrate protects
dopaminergic SH-SY5Y cells in a rotenone model of Parkinson’s
disease. J. Neurosci. Res. 2006, 84, 1376–1384. (c) Molina-Jimenez,