J. J. E. Moreau et al.
pellet): n˜ = 893, 1023, 1125 (nSiO), 1585 (dNH), 1625 (nCO), 2850 (nCHsym),
2923 (nCHasym), 3349 (nNH) cmÀ1; N2 BET surface area: 41.7 m2 gÀ1; elemen-
tal analysis calcd (%) for C20H42O6N4Si2: C 48.95, H 8.63, N 11.42, Si
11.45; found: C 48.51, H 8.74, N 11.49, Si 11.15.
Chem. Int. Ed., 1996, 35, 1420–1436; c) R. J. P. Corriu, Angew.
Chem. 2000, 112, 1432–1455; Angew. Chem. Int. Ed. 2000, 39, 1376–
1398; d) K. J. Shea, J. J. E. Moreau, D. Loy, R. J. P. Corriu, B. Boury,
in Functional Hybrid Materials (Eds.: P. Gomez-Romero, C. San-
chez), Wiley-VCH, 2004, pp. 50.
Fluoride-catalysed hydrolysis and polycondensation
[6] a) J. J. E. Moreau, M. Wong Chi Man, Coord. Chem. Rev. 1998, 178–
180, 1073–1084, and references therein; b) E. Lindner, T. Schneller,
F. Auer, H. A. Mayer, Angew. Chem. 1999, 111, 2288–2309; Angew.
Chem. Int. Ed. 1999, 38, 2155–2174; c) A. Adima, J. J. E. Moreau,
M. Wong Chi Man, J. Mater. Chem. 1997, 7, 2331–2333; d) A.
Adima, J. J. E. Moreau, M. Wong Chi Man, Chirality 2000, 5–6, 411–
420; e) P. Hesemann, J. J. E. Moreau, Tetrahedron: Asymmetry 2000,
11, 2183–2194; f) U. Schubert, N. Hꢅsing, A. Lorenz, Chem. Mater.
1995, 7, 2010–2027.
[7] R. J. P. Corriu, J. J. E. Moreau, P. Thꢀpot, M. Wong Chi Man, C.
Chorro, J.-P. Lꢁre-Porte, J-L. Sauvajol, Chem. Mater. 1994, 6, 640–
649.
[8] a) J.-C. Broudic, O. Conocar, J. J. E. Moreau, D. Meyer, M. Wong
Chi Man, J. Mater. Chem. 1999, 9, 2283–2285; b) S. Bourg, J.-C.
Broudic, O. Conocar, J. J. E. Moreau, D. Meyer, M. Wong Chi Man,
J. Mater. Chem. 2001, 11, 491–499; c) D. Meyer, O. Conocar, J. J. E.
Moreau, M. Wong Chi Man FR 2770153, 1999.
General method for the preparation of the amorphous bridged silses-
quioxanes A9–12: These materials were synthesised by hydrolysis of the
silylated bis-urea precursor in a mixture of ethanol, water and NH4F at a
molar ratio of Px/EtOH/H2O/NH4F 1:60:6:0.01. The reaction was carried
out as follows: Px was dissolved in freshly distilled ethanol containing
NH4F and water and the homogeneous solution was allowed to stand at
208C. Gelation had occurred after 24 h. After curing at 208C for 48 h,
the gel was powdered. After air drying, the solid was collected, washed
with EtOH and acetone and then dried (1108C, 6 h), yielding a white
powder.
Synthesis of A9: 13C CP MAS NMR: d = 10.2, 18.5, 30.1, 41.1, 161 ppm;
29Si CP MAS NMR: d = À58.7, À66.3 ppm; IR (KBr, pellet): n˜ = 941.2
(nSiÀOH), 1003, 1138 (nSiO), 1566.6 (dNH), 1657.1 (nCO), 2851.6 (nCHsym),
2928.2 (nCHasym), 3339.7 (nNH) cmÀ1; N2 BET surface area: 3.8 m2 gÀ1; ele-
mental analysis calcd (%) for C17H34O5N4Si2: C 47.41, H 7.96, N 13.01, Si
13.04; found: C 46.60, H 8.13, N 12.41, Si 12.35.
Synthesis of A10: 13C CP MAS NMR: d
= 10.3, 18.8, 30.0, 41.4,
[9] a) E. Z. Faraggi, Y. Sorek, O. Levi, Y. Avny, D. Davidov, R. Neu-
mann, R. Reisfield, Adv. Mater. 1996, 8, 833–835; b) F. Chaput, D.
Reihl, Y. Lꢀvy, J. P. Boilot, Chem. Mater. 1993, 5, 589–591; c) O.
Dautel, J.-P. Lꢁre-Porte, J. J. E. Moreau, M. Wong Chi Man, Chem.
Commun. 2003, 2662–2663; d) H. W. Oviatt, K. J. Shea, S. Kalluri,
Y. Shi, W. H. Steier, L. R. Dalton, Chem. Mater. 1995, 7, 493–498;
e) J. Livage, F. Babonneau, C. Sanchez, in Sol–gel Optics: Processing
and Applications (Ed.: L. C. Klein), Kluwer, Boston, 1994, p. 39;
f) D. Avnir, S. Braun, D. Levy, M. Ottolenghi, in Sol–gel Optics:
Processing and Applications (Ed.: L. C. Klein), Kluwer, Boston,
1994, p. 303.
159.9 ppm; 29Si CP MAS NMR: d = À59.0, À66 ppm; IR (KBr, pellet):
n˜ = 920, 1029, 1132 (nSiO), 1572 (dNH), 1645 (nCO), 2857 (nCHsym), 2931
(nCHasym), 3380 (nNH) cmÀ1; N2 BET surface area: 7 m2 gÀ1; elemental anal-
ysis calcd (%) for C18H36O5N4Si2: C 48.62, H 8.16, N 12.6, Si 12.63;
found: C 46.89, H 8.23, N 11.99, Si 12.0.
Synthesis of A11: 13C CP MAS NMR: d
= 11.0, 18.7, 30.3, 41.1,
58.,160.2 ppm; 29Si CP MAS NMR: d = À58.5, À66.6 ppm; IR (KBr,
pellet): n˜ = 917, 1026, 1131 (nSiO), 1571 (dNH), 1646 (nCO), 2858 (nCHsym),
2932 (nCHasym), 3384.8 (nNH) cmÀ1; N2 BET surface area: 2.2 m2 gÀ1; ele-
mental analysis calcd (%) for C19H38O5N4Si2: C 49.75, H 8.35, N 12.21, Si
12.25; found: C 48.23, H 8.37, N 12.19, Si 11.90.
[10] R. J. P. Corriu, J. J. E. Moreau, P. Thꢀpot, M. Wong Chi Man, Chem.
Mater. 1996, 8, 100–106.
[11] a) M. E. Davis, Nature 2002, 413, 813–821; b) M. J. MacLachlan, I.
Manners, G. A. Ozin, Adv. Mater. 2000, 12, 675–681.
Synthesis of A12: 13C CP MAS NMR: d = 10.7, 30.4, 40.3, 159.9 ppm;
29Si CP MAS NMR: d = À58.54, À66.48 ppm; IR (KBr, pellet): n˜
=
920, 1027, 1136 (nSiO), 1574 (dNH), 1646 (nCO), 2856 (nCHsym), 2932 (nCHasym),
3374 (nNH) cmÀ1; N2 BET surface area: 3.5 m2 gÀ1; elemental analysis
calcd (%) for C20H40O5N4Si2: C 50.82, H 8.53, N 11.85, Si 11.88; found: C
48.77, H 8.64, N 11.24, Si 11.3.
[12] a) C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S.
Beck, Nature 1992, 359, 710–712; b) J. S. Beck, J. C. Vartuli, W. J.
Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu,
D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L.
Schlenker, J. Am. Chem. Soc. 1992, 114, 10834–10843; c) S. Inagaki,
Y. Fukushima, K. Kuroda, J. Chem. Soc. Chem. Commun. 1993,
680–681; d) Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier,
P. Sieger, R. Leon, P. M. Petroff, F. Schꢅth, G. D. Stucky, Nature
1994, 368, 317–321.
[13] a) S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuna, O. Terasaki, J. Am.
Chem. Soc. 1999, 121, 9611–9622; b) S. Guan, S. Inagaki, T. Ohsuna,
O. Terasaki, J. Am. Chem. Soc. 2000, 122, 5660–5661; c) B. J. Melde,
B. T. Holland, C. F. Blanford, A. Stein, Chem. Mater. 1999, 11,
3302–3308; d) T. Asefa, M. J. MacLachlan, N. Coombs, G. A. Ozin,
Nature 1999, 402, 867–871; e) C. Yoshina-Ishii, T. Asefa, M. J. Ma-
cLachlan, N. Coombs, G. A. Ozin, Chem. Commun. 1999, 2539–
2540; f) M. J. MacLachlan, T. Asefa, G. A. Ozin, Chem. Eur. J. 2000,
6, 2507–2511; g) T. Asefa, C. Yoshina-Ishii, M. J. MacLachlan, G. A.
Ozin, J. Mater. Chem. 2000, 10, 1751–1755; h) A. Sayari, S. Hamou-
di, Y. Yang, I. L. Moudrakovski, J. R. Ripmeester, Chem. Mater.
2000, 12, 3857–3863; i) A. Stein, B. T. Melde, R. C. Schroden, Adv.
Mater. 2000, 12, 1403–1419; j) Y. Lu, H. Fan, N. Doke, D. A. Loy,
R. A. Assink, D. A. LaVan, C. J. Brinker, J. Am. Chem. Soc. 2000,
122, 5258–5261.
Acknowledgements
The authors gratefully acknowledge the “Ministꢁre de la Recherche”
(ACI 2000: Physicochimie de la matiꢁre complexe) and the CNRS for fi-
nancial supports.
[1] a) C. Sanchez, F. Ribot, New J. Chem. 1994, 18, 1007–1047; b) Or-
ganic/inorganic hybrid materials (Eds.: R. M. Laine, C. Sanchez,
C. J. Brinker, E. Giannelis), MRS Symp. vol. 519, 1998; c) Organic/
inorganic hybrid materials II, (Eds.: R. M. Klein, M. Deguire, F. Lor-
raine, J. Mark), MRS Symp. vol. 576, 1999; d) Organic/inorganic
hybrid materials III (Eds.: R. M. Laine, C. Sanchez, C. J. Brinker),
MRS Symp. vol. 628, 2000; e) J. J. E. Moreau, L. Vellutini, M.
Wong Chi Man, C. Bied, J-L. Bantignies, P. Dieudonnꢀ, J-L. Sauva-
jol, Mater. Res. Soc. Symp. Proc. 2002, 726, 235–242.
[2] Functional Hybrid Materials (Eds.: P. Gomez-Romero, C. Sanchez),
Wiley-VCH, 2004.
[14] a) A. Sayari, S. Hamoudi, Chem. Mater. 2001, 13, 3151–3168;
b) M. P. Kapoor, Q. Yang, S. Inagaki, J. Am. Chem. Soc. 2002, 124,
15176–15177.
[3] a) K. J. Shea, D. A. Loy, O. W. Webster, Chem. Mater. 1989, 1, 512–
513; b) K. J. Shea, D. A. Loy, O. W. Webster, J. Am. Chem. Soc.
1992, 114, 6700–6710.
[15] R. J. P. Corriu, J. J. E. Moreau, P. Thꢀpot, M. Wong Chi Man, J.
Mater. Chem. 1994, 4, 987–989.
[4] R. J. P. Corriu, J. J. E. Moreau, P. Thꢀpot, M. Wong Chi Man, Chem.
Mater. 1992, 4, 1217–1224.
[16] A. Shimojima, K. Sugahara, K. Kuroda, Angew. Chem. 2003, 115,
4191–4194; Angew. Chem. Int. Ed. 2003, 42, 4057–4060.
[5] a) D. A. Loy, K. J. Shea, Chem. Rev. 1995, 95, 1431–1442; b) R. J. P.
Corriu, D. Leclercq, Angew. Chem. 1996, 108, 1524–1540; Angew.
1536
ꢂ 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2005, 11, 1527 – 1537