4616 J. Phys. Chem. B, Vol. 106, No. 18, 2002
Yeung et al.
experiment and infrared spectroscopy. UV spectroscopy and
XPS analyses of the catalysts also yield identical band gap
energy and valence band structure. The TiO2 differs mainly in
their crystallinity as measured by XRD. Crystallinity gave an
indirect qualitatiVe measure of the structural defects present in
the catalyst materials. However, the exact nature and number
of these defects are difficult if not impossible to characterize
and quantify. Their presence is known to affect the migration
of photogenerated charges and their recombination rate. This
is expected to directly impact the photocatalytic activity of the
nanostructured TiO2. It is clearly manifested by the increased
trapping of photogenerated holes at subsurface region of the
catalyst and concomitant decrease in OH• radicals as detected
and facility for conducting the XRD, XANES, and EXAFS
studies. We also acknowledge the help of Dr. Miguel Angel
Ba n˜ ares of Instituto de Cat a´ lisis y Petroleoqu ´ı mica for conduct-
ing the MicroRaman study, and Ms. Willma Lau Wai Ngar for
conducting some of the photoreaction experiments.
References and Notes
(1) Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.
Chem. ReV. 1995, 95, 69.
(2) Mills, A.; Davies, R. H.; Worsley, D. Chem. Soc. ReV. 1993, 417.
(
3) Fox, M. A.; Dulay, T. Chem. ReV. 1993, 93, 341.
(4) Nimlos, M. R.; Jacoby, W. A.; Blake, D. M.; Milne, T. A. EnViron.
Sci. Technol. 1993, 27, 732.
(5) Muggli, D. S.; Larson, S. A.; Falconer, J. L. J. Phys. Chem. 1996,
100, 15886.
1
7
by EPR. This suggests that the lower mineralization rate of
the less crystalline 5 nm TiO2 is directly related to the greater
number of defects in its structure.
(6) Maira, A. J.; Soria, J.; Augugliaro, V.; Loddo, V. Chem. Biochem.
Eng. Q. 1997, 11 (2), 89.
(7) Djeghri, N.; Teichner, S. J. J. Catal. 1980, 6, 99.
(
(
8) Blake, N. R.; Griffin, G. L. J. Phys. Chem. 1988, 92, 5697.
9) Luo, Y.; Ollis, D. F. J. Catal. 1996, 163, 1.
Concluding Remarks
(10) Ameen, M. M.; Raupp, G. B. J. Catal. 1999, 184, 112.
It is important to elucidate the role of structure, chemistry
and electronic on catalytic activity of TiO2 nanoparticles in order
to further enhance their performance as an environmental
photocatalyst. The ability to engineer the phase structure, size
and crystallinity of the nanometer sized TiO2 enabled us to
separately probe the effects of structure (i.e., crystal and
(11) Maira, A. J.; Yeung, K. L.; Yan, C. Y.; Yue, P. L.; Chan, C. K. J.
Catal. 2000, 192, 185.
(12) Maira, A. J.; Yeung, K. L.; Soria, J.; Coronado, J. M.; Belver, C.;
Lee, C. Y.; Augugliaro, V. Appl. Catal. B: EnViron. 2001, 29, 327.
(13) Anpo, M.; Shima, T.; Kodama, S.; Kubokama, Y. J. Phys. Chem.
987, 91, 4305.
1
(14) Xu, N.; Shi, Z.; Fan, Y.; Dong, J.; Shi, J.; Hu, M. Z.-C. Ind. Eng.
Chem. Res. 1999, 38, 373.
(15) Wang, C.-C.; Zhang, Z.; Ying, Y. J. Nanostr. Mater. 1997, 9, 583.
(16) Zhang, Z.; Wang, C.-C.; Zakaria, R.; Ying, Y. J. Phys. Chem. B
aggregate size)1
1,12
9
and electronics,
12,17
as well as surface
1
hydroxyl group on the photocatalytic activity of the nano-
structured TiO2. This work demonstrated that the crystal size
and crystallinity of the nanometer sized TiO2 can be precisely
engineered using the modified sol-gel method. Reaction study
conducted using gas-phase photooxidation of TCE as a probe
reaction show that both crystal size and crystallinity affect the
catalyst activity. Although the influence of crystallinity on TCE
conversion rate is weak, it has a significant effect on the TCE
mineralization. The results of this study suggest that an effective
TiO2 photocatalyst must have large surface area populated by
low coordinated surface sites (i.e., corners, edges, kinks, and
defects) that are abundantly hydroxylated. This can be achieved
by decreasing the crystal size and by using hydrothermal
crystallization method. However, it is also necessary that the
nanometer sized TiO2 should be well crystallized with minimal
bulk defects that may trap migrating photogenerated charges.
This latter requirement is far more difficult to satisfy as size of
the TiO2 crystal diminishes. Further study will be conducted to
formulate new synthesis strategy for reducing the number of
bulk defect sites in nanostructured TiO2 (dp < 6 nm).
1
998, 102, 10871.
(17) Coronado, J. M.; Maira, A. J.; Conesa, J. C.; Augugliaro, V.; Soria,
J. Langmuir 2001, 17, 5368.
(18) Cao, L.; Huang, A.; Spiess, F. J.; Suib, S. L. J. Catal. 1999, 188,
48.
(
19) Maira, A. J.; Coronado, J. M.; Augugliaro, V.; Yeung, K. L.;
Conesa, J. C.; Soria, J. J. Catal. 2001, 202, 413.
20) Zaban, A.; Aruna, S. T.; Tirosh, S.; Gregg, B. A.; Mastai, Y. J.
Phys. Chem. B. 2000, 104, 4130.
21) Cao, L.; Gao, Z.; Suib, S. L.; Obee, T. N.; Hay, S. O.; Freihaut, J.
D. J. Catal. 2000, 196, 253.
22) Brus, L. J. Phys. Chem. 1986, 90, 2555.
(
(
(
(23) Kariyone, T.; Anpo, M.; Chiba, K.; Tomonari, M. Hyomen (surface)
991, 29, 156.
1
(
(
(
24) Dagn, G.; Sampath, S.; Lev, O. Chem. Mater. 1995, 7, 446.
25) Henglein, A. Chem. ReV. 1989, 89, 1861.
26) Iida, Y.; Furukawa, M.; Aoki, T.; Sakai, T. Appl. Spectrosc. 1998,
52, 673.
(27) Chen L. X.; Rajh, T.; J a¨ ger, W.; Nedeljkovic, J.; Thurnauer, M. C.
J. Synchrotron Radiat. 1999, 6, 445.
(28) D’Hennezel, O.; Ollis, D. F. J. Catal. 1997, 167, 118.
(29) Phillips, L. A.; Raupp, G. B. J. Mol. Catal. 1992, 77, 297.
(30) Dreiessen, M. D.; Goodman, A. L.; Miller, T. M.; Zaharoies, G.
A.; Grassian, V. H. J. Phys. Chem. B 1998, 102, 549.
(
31) Larson, S. A.; Falconer, J. L. Appl. Catal. B: EnViron. 1994, 4,
25.
(32) Wang, K.-H.; Tsai, H.-H.; Hsieh, Y.-H. Appl. Catal. B: EnViron.
1998, 17, 313.
3
Acknowledgment. The authors gratefully acknowledge the
following funding from the Hong Kong Research Grant Councils
(33) Yamazaki-Nishida, S.; Nagano, K. J.; Phillips, L. A.; Cervera-
(RGC-HKUST 6247/00P) and the Institute of Nano Science and
March, S.; Anderson, M. A. J. Photochem. Photobiol. A: Chem. 1993, 70,
Technology (INST). We also thank the Synchrotron Radiation
Research Center (SRRC) of Taiwan for providing the beam time
95.
(34) Pruden, A.; Ollis, D. J. Catal. 1983, 60, 404.