9044 J. Phys. Chem. A, Vol. 107, No. 42, 2003
Jiao et al.
-
the parent molecule to form NO2 . We find the following: (1)
(8) Liang, Z.; Marshall, A. G. Anal. Chem. 1990, 62, 70.
(9) Marshall, A. G.; Wang, T. L.; Ricca, T. L. J. Am. Chem. Soc. 1985,
07, 7983.
10) Guan, S. J. Chem. Phys. 1989, 91, 775.
(11) Chen, L.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes
1987, 79, 115.
•-
at low pressures no intermediate product ion such as CH3NO2
is formed (CH2NO2 produces NO2 directly, along with minor
product ions CN and CNO ); (2) the reaction is exothermic
1
-
-
(
-
-
-
11
3
and yet slow, with the rate e1.6 × 10
cm /s; (3) no other
(12) Rempel, D. L.; Huang, S. K.; Gross, M. L. Int. J. Mass Spectrom.
anions are found to be reactive with the parent molecule. Due
to the time resolution of the FTMS, observation 1 does not rule
Ion Processes 1986, 70, 163.
(
13) Straub, H. C.; Renault, P.; Lindsay, B. G.; Smith, K. A., Stebbings,
R. F. Phys. ReV. A 1995, 52, 1115.
14) Guan, S.; Marshall, A. G. Int. J. Mass Spectrom. Ion Processes
995, 146/147, 261.
15) Wang, M.; Marshall, A. G. Anal. Chem. 1989, 61, 1288.
•-
out the possibility of CH3NO2 as an intermediate product that
undergoes unimolecular dissociation with a lifetime shorter than
milliseconds. If this was the case, we could not observe such
an intermediate. Referring to the previously proposed amine
sensitization mechanism of nitromethane, which includes an
endothermic reaction pathway from CH2NO2 to form NO2 ,
the current FTMS results point out another possible reaction
pathway (reaction 9) which is exothermic. Whether this reaction
pathway makes a significant contribution to amine sensitization
in the condensed phase is a question which warrants further
investigation.
(
1
2
(
(16) Jiao, C. Q.; DeJoseph, C. A., Jr.; Garscadden, A. J. Chem. Phys.
002, 117, 161.
(
17) Gord, J. R.; Freiser, B. S. J. Chem. Phys. 1991, 94, 4282.
-
- 3,4
(18) Rincon, M. E.; Pearson, J.; Bowers, M. T. J. Phys. Chem. 1988,
9
2, 4290.
(19) Derai, R.; Mauclaire, G.; Marx, R. Chem. Phys. Lett. 1982, 86,
2
75.
(20) http://webbook.nist.gov/.
(21) Baer, T.; Hass, J. R. J. Phys. Chem. 1986, 90, 451.
(22) McKee, M. L. J. Phys. Chem. 1986, 90, 2335.
23) Egsgaard, H.; Carlson, L.; Elbel, S. Ber. Bunsen-Ges. Phys. Chem.
986, 90, 369.
24) Lifshits, C.; Rejwan, M.; Levin, I.; Peres, T. Int. J. Mass Spectrom.
Ion Processes 1988, 84, 271.
25) Sirois, M.; Homes, J. L.; Hop, C. E. C. A. Org. Mass Spectrom.
(
1
Acknowledgment. The authors thank the Air Force Office
of Scientific Research for support.
(
(
Note Added in Proof. W. Sailer et al.37 have reported
recently on absolute partial cross sections for dissociative
electron attachment (DEA) to nitromethane. They used a crossed
electron beam-molecular beam interacting system whose
products were measured using a quadrupole mass spectrometer.
The data as a function of electron energy over the range 0 to
.5 eV show various resonances. They explain the detection of
and CNO at low electron energies in terms of DEA to
multimode energy transfer from vibrationally excited molecules.
1
990, 25, 167.
(26) Kandel, R. J. Chem. Phys. 1955, 23, 84.
(27) Constantinou, C. P. The Nitromethane-Amine Interaction. Ph.D.
dissertation, Cambridge University, Cambridge, U.K., 1992.
28) Gupta, Y. M.; Pangilinan, G. I.; Winey, J. M.; Constantinou, C. P.
(
Chem. Phys. Lett. 1995, 232, 341.
(29) Constantinou, C. P.; Mukundan, T.; Chaudhri, M. M. Philos. Trans.
R. Soc. London A 1992, 339, 403.
9
O
(
30) Cook, M. D.; Haskins, P. J. Proc. 9th Symp. (Int.) Detonation 1989,
027. Cook, M. D.; Haskins, P. J. Proc. 10th Symp. (Int.) Detonation 1993,
870.
-
-
1
(31) Politzer, P.; Seminario, J. M.; Zacarias, A. G. Mol. Phys. 1996,
8
9, 1511.
(
References and Notes
32) Engelke, R.; Earl, W. L.; Rohlfing, C. M. Int. J. Chem. Kinet. 1986,
18, 1205.
(33) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin,
R. D.; Mallard, W. G. Gas-Phase Ion and Neutral Thermochemistry. J. Phys.
Chem. Ref. Data 1988, 17.
(34) Jiao, C. Q.; Nagpal, R.; Haaland, P. Chem. Phys. Lett. 1997, 265,
239.
(35) CRC Handbook of Chemistry and Physics, 81st ed.; Kide, D. R.,
Ed.; CRC Press: Boca Raton, FL, 2000.
(
1) Jacobsen, L. S.; Carter, C. D.; Jackson, T. A.; Baurle, R. A. 41st
AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 6-9, 2003.
2) Lifshits, A.; Barzilai-Gilboa, S. Twentieth Symposium (Interna-
(
tional) on Combustion; The Combustion Institute: Pittsburgh, PA, 1984;
pp 631-638.
(
(
3) Gruzdkov, Y. A.; Gupta, Y. M. J. Phys. Chem. A 1998, 102, 2322.
4) Woods, E., III; Dessiaterik, Y.; Miller, R. E.; Baer, T. J. Phys.
Chem. A 2001, 105, 8273.
(
5) Haaland, P. D. Chem. Phys. Lett. 1990, 170, 146.
(36) Domenico, A. D.; Franklin, J. L. Int. J. Mass Spectrom. Ion Phys.
1981, 40, 287.
(37) Sailer, W.; Pelc, A.; Matejcik, S.; Illenberger, E.; Scheier, P.; Mark,
T. D. J. Chem. Phys. 2002, 117, 7989.
(
82.
6) Comisarow, M. B.; Marshall, A. G. Chem. Phys. Lett. 1974, 25,
2
(7) Marshall, A. G.; Grosshans, P. B. Anal. Chem. 1991, 63, 215A.