2
8
B. Weng et al. / Thermochimica Acta 524 (2011) 23–28
References
[16] J. James, J. Reilly, H. Richard, J. Wiswall, Reaction of hydrogen with alloys of
magnesium and nickel and the formation of Mg2NiH4, Inorg. Chem. 7 (1968)
254–2256.
2
[
[
[
[
[
[
[
[
1] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications,
Nat. Mater. 414 (2001) 353–358.
2] R.L. Cohen, J.H. Wernick, Hydrogen storage materials: properties and possibil-
ities, Science 214 (1981) 1081–1087.
3] V. Sit, R.A. Geanangel, W.W. Wendlandt, The thermal dissociation of NH3BH3,
Thermochim. Acta 113 (1987) 379–382.
4] A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P.H. Mauron, C.H. Emmenegger, LiBH4
a new hydrogen storage material, J. Power Sources 118 (2003) 1–7.
5] Q.F. Ge, Structure and energetics of LiBH4 and its surfaces: a first-principles
study, J. Phys. Chem. A 108 (2004) 8682–8690.
6] B.H. Liu, Z.P. Li, S. Suda, Thermal properties of alkaline sodium borohydride
solutions, Thermochim. Acta 471 (2008) 103–105.
7] Y. Nakamori, H.W. Li, K. Miwa, S. Towata, S. Orimo, Hydrogen releasing of
lithium amidoborane-LiNH2BH3, Mater. Trans. 47 (2006) 1898–1901.
8] J. Baumann, F. Baitalow, G. Wolf, Thermal decomposition of polymeric aminob-
orane (H2BNH2)x under hydrogen release, Thermochim. Acta 430 (2005)
[
17] P. Selvam, B. Viswanathan, C.S. Swamy, V. Srinivasan, Thermal studies on
Mg2NiH4: existence of additional hydride phase in the Mg2Ni hydrogen system,
Thermochim. Acta 125 (1988) 1–8.
[
[
[
18] P. Selvam, K. Yvon, Synthesis of Mg2FeH6, Mg2CoH5 and Mg2NiH4 by high-
pressure sintering of the elements, Int. J. Hydrogen Energy 16 (1991) 615–617.
19] U. Häussermann, H. Blomqvist, D. Noréus, Bonding and stability of the hydrogen
storage material Mg2NiH4, Inorg. Chem. 41 (2002) 3684–3692.
20] K. Bohmhammel, B. Christ, G. Wolf, Kinetic investigations on the basis of
isothermal DSC measurements of hydrogenation and dehydrogenation of mag-
nesium hydride, Thermochim. Acta 310 (1998) 167–171.
[
[
[
21] H. Blomqvist, E. Rönnebro, D. Noréus, T. Kuji, Competing stabilization mecha-
nisms in Mg2NiH4, J. Alloys Compd. 330–332 (2002) 268–270.
22] M.G. Hu, R.A. Geanangel, W.W. Wendlandt, The thermal decomposition of
ammonia borane, Thermochim. Acta 23 (1978) 249–255.
23] O. Palumbo, A. Paolone, P. Rispoli, R. Cantelli, T. Autrey, Decomposition of
NH3BH3 at sub-ambient pressures: a combined thermogravimetry–differential
thermal analysis–mass spectrometry study, J. Power Sources 195 (2010)
9
–14.
[
9] Z.T. Xiong, C.K. Yong, G.T. Wu, P. Chen, W. Shaw, P.P. Edwards, A. Karkamkar,
W.F. David, T. Autrey, High-capacity hydrogen storage in lithium and sodium
amidoboranes, Nat. Mater. 7 (2008) 138–141.
1615–1618.
[
[
[
24] G. Wolf, J. Baumann, F. Baitalow, F.P. Hoffmann, Calorimetric process monitor-
ing of thermal decomposition of B–N–H compounds, Thermochim. Acta 343
[
[
[
[
10] Z.T. Xiong, G.T. Wu, Y.S. Chua, J.J. Hu, T. He, W.L. Xu, P. Chen, Synthesis of
sodium amidoborane (NaNH2BH3) for hydrogen production, Energy Environ.
Sci. 1 (2008) 360–363.
11] H.K. Diyabalanage, R.P. Shrestha, T.A. Semelsberger, B.L. Scott, M.E. Bowden, B.L.
Davis, A.K. Burrell, Calcium amidotrihydroborate: a hydrogen storage material,
Angew. Chem. Int. Ed. 46 (2007) 8995–8997.
12] Q.A. Zhang, C.X. Tang, C.H. Fang, F. Fang, D.L. Sun, L.Z. Ouyang, M. Zhu, Synthe-
sis, crystal structure, and thermal decomposition of strontium amidoborane, J.
Phys. Chem. C 114 (2010) 1709–1714.
13] X.D. Kang, L.P. Ma, Z.Z. Fang, L.L. Gao, J.H. Luo, S.C. Wang, P. Wang, Promoted
hydrogen release from ammonia borane by mechanically milling with mag-
nesium hydride: a new destabilizing approach, Phys. Chem. Chem. Phys. 11
(
2000) 19–25.
25] F. Baitalow, J. Baumann, G. Wolf, K. Jaenicke, G. Leitner, Thermal decomposi-
tion of B–N–H compounds investigated by using combined thermoanalytical
methods, Thermochim. Acta 391 (2002) 159–168.
26] J. Feigerle, N. Smyrl, J. Morrell, A.C. Stowe, Thermal decomposition of t-
butylamine borane studied by in situ solid state NMR, in: G.G. Wicks, J. Simon,
R. Zidan, E. Lara-Curzio, T. Adams, A. Karkamkar, B. Garcia-Diaz, J. Zayas, R. Sin-
delar (Eds.), Materials Challenges in Alternative and Renewable Energy, John
Wiley & Sons, Inc., Hoboken, New Jersey, 2010, pp. 73–80.
[
27] J.C. Chan, M. Bertmer, H. Eckert, Site connectivities in amorphous materi-
als studied by double-resonance NMR of quadrupolar nuclei: high-resolution
1
1
27
B– Al spectroscopy of aluminoborate glasses, J. Am. Chem. Soc. 121 (1999)
(
2009) 2507–2513.
5238–5248.
[
14] H. Wu, W. Zhou, T. Yildirim, Alkali and alkaline-earth metal amidoboranes:
structure, crystal chemistry, and hydrogen storage properties, J. Am. Chem.
Soc. 130 (2008) 14834–14839.
[
28] O. Gunaydin-Sen, R. Achey, N.S. Dalal, A. Stowe, T. Autrey, High resolution 15N
NMR of the 225 K phase transition of ammonia borane (NH3BH3): mixed order-
disorder and displacive behavior, J. Phys. Chem. B 111 (2007) 677–681.
29] S. Xie, Y. Song, Z. Liu, In situ high-pressure study of ammonia borane by Raman
and IR spectroscopy, Can. J. Chem. 87 (2009) 1235–1247.
[15] J.H. Luo, X.D. Kang, P. Wang, Renewed insight into the promoting mecha-
nism of magnesium hydride on ammonia borane, ChemPhysChem 11 (2010)
[
2
152–2157.