T. Tauchi et al. / Tetrahedron: Asymmetry 17 (2006) 2195–2198
2197
OMOM
OMOM
OMOM
OMOM
OH
b
a
c
O
H
O
O
O
O
O
O
O
O
O
O
(
S
)-6a
10 (83% )
11 (78% )
12 (88% )
(94% ee)
OMOM
OH
OMOM
d
f
+
O
O
O
O
O
O
O
OH
O
O
13 (52% )
14 (38%)
(S)-1 (82% , 94% ee)
e
(61%)
Scheme 4. Reagents and conditions: (a) (COCl)2, DMSO, Et3N, CH2Cl2, ꢀ60 °C, 2 h; (b) NaH, [CH3COCH2PPh3]+Brꢀ, THF, rt, 14 h; (c) Bu3SnH,
AIBN, benzene, reflux, 1 h; (d) LDA, (E)-CH3CH@CHCHO, THF, ꢀ78 °C, 2 h; (e) basic alumina, CH2Cl2, rt, 1 h; (f) concd HCl, AcOH, rt, 2 h.
38% yield and alcohol 13 in 52% yield, which was readily
dehydrated to enone 14 in the presence of basic alumina.
Finally, removal of the MOM group yielded (S)-vertinolide
enantiomeric excess. We hope that our simple synthesis will
be helpful for solving unidentified properties of (S)-1 in the
future.
1 (94% ee determined by HPLC), which showed a specific
20
rotation of ꢀ25.8 (lit.1 ½aꢁD ¼ ꢀ25:0). No loss of enantio-
purity was observed in the chemical transformation of
(S)-6a into (S)-1. In addition, physical and spectral proper-
ties of synthetic vertinolide 1 matched those of natural
vertinolide 1.1,2,11
Acknowledgments
We would like to thank Amano Enzyme Co., Ltd, Meito
Sangyo Co., Novo Nordisk, and Roche Molecular Bio-
chemicals for a generous gift of enzymes. This work was
supported in part by a Grant-in-Aid for Scientific Research
from the Ministry of Education, Science, Sports, and Cul-
ture of Japan.
Our strategy is easily adaptable to the synthesis of (S)-
dehydrovertinolide 16 as shown in Scheme 5. The highly
conjugated enone 16 was synthesized by a similar proce-
dure to that described above.
References
OMOM
OMOM
1. (a) Trifonov, L. S.; Dreiding, A. S.; Hoesch, L.; Rast, D. M.
Helv. Chim. Acta 1981, 64, 1843–1846; (b) Trifonov, L.; Bieri,
J. H.; Prewo, R.; Dreiding, A. S.; Rast, D. M.; Hoesch, L.
Tetrahedron 1982, 38, 397–403.
2. Takaiwa, A.; Yamashita, K. Agric. Biol. Chem. 1983, 47,
429–430.
a, b
O
O
O
O
O
O
15 (68%)
11
OH
3. (a) Clemo, N. G.; Pattenden, G. Tetrahedron Lett. 1982, 23,
585–588; (b) Takaiwa, A.; Yamashita, K. Agric. Biol. Chem.
1982, 46, 1721–1722; (c) Takaiwa, A.; Yamashita, K. Agric.
Biol. Chem. 1984, 48, 2061–2065; (d) Clemo, N. G.; Patten-
den, G. J. Chem. Soc., Perkin Trans. 1 1985, 2407–2411.
4. Takeda, K.; Kubo, H.; Koizumi, T.; Yoshii, E. Tetrahedron
Lett. 1982, 23, 3175–3178.
5. Matsuo, K.; Kanayama, M.; Xu, J. Y.; Takeuchi, R.;
Nishiwaki, K.; Asaka, Y. Heterocycles 2005, 65, 1609–1614.
6. (a) Kobayashi, K.; Ui, T. Physiol. Plant Pathol. 1977, 11, 55–
60; (b) Anke, H.; Schwab, H.; Achenbach, H. J. Antibiot.
1980, 33, 931–939; (c) Taylor, S. L.; Peterson, R. E.; Gray, L.
E. Appl. Environ. Microbiol. 1985, 50, 1328–1329; (d) Reeder,
R. T.; Whitmarsh, J.; Gray, L. E.; Peterson, R. E. Physiol.
Mol. Plant Pathol. 1986, 28, 371–379.
c
O
O
O
S)-16 (65%)
(
Scheme 5. Reagents and conditions: (a) LDA, (E)-CH3CH@CHCHO,
THF, ꢀ78 °C, 8 h; (b) basic alumina, CH2Cl2, rt, 1 h; (c) AcOH, H2O,
60 °C, 3 h.
3. Conclusion
In conclusion, we have developed a chemoenzymatic syn-
thesis of (S)-vertinolide 1 with a chiral quaternary carbon
atom at C5. The lipase-catalyzed kinetic resolution of the
tetronic acid derivatives 6 demonstrated good enantioselec-
tivity, in which both enantiomers were obtained with high
enantiomeric excess by the use of lipase PS-D or AY. Chem-
ical transformation of (S)-alcohol 6 provided chiral (S)-ver-
tinolide 1 in 33% yield in five steps with no loss of
7. Other name: aspertetronin A (a) Ballantine, J. A.; Ferrito, V.;
Hassall, C. H.; Jones, V. I. P. J. Chem. Soc. C: Org. 1969, 56–
61; (b) Kobayashi, K.; Ui, T. Tetrahedron Lett. 1975, 4119–
4122; (c) Yamashita, K.; Takaiwa, A.; Nakada, H. Agric.
Biol. Chem. 1980, 44, 2931–2935; (d) Clemo, N.; Pattenden,
G. Tetrahedron Lett. 1982, 23, 589–592.