2508
M. Komloova et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2505–2509
would help in its accommodation in the hAChE peripheral active
site, when compared to a structurally rigid molecule 22 with a
naphtalenyl linkage.
The molecular modelling results for hBChE are depicted in Fig-
ure 3. Similar to the AChE results, the top-scored docking pose of
compound 12 (À9.22 kcal/mol) displayed important interactions
with aromatic residues. Namely, both quinolinium moieties were
In summary, 18 symmetrical bis-quinolinium compounds were
prepared and their inhibitory abilities were tested in vitro on hAChE
and hBChE. Three compounds showed inhibitory results better or
comparable to the standards of edrophonium chloride and
BW284c51 and in addition one compound (12) also presented selec-
tivityforhAChE. Noneofthepreparedcompoundswereabletoexceed
the ambenonium chloride in hAChE inhibition. The kinetic experi-
ments confirmed non-competitive inhibition of hAChE by two chosen
bis-quinolinium compounds. The binding of novel compounds to the
activesiteSer203wasfurthersuggestedbymolecularmodellingstud-
ies. TheSARfindingswerealsocomparabletopreviouslypreparedbis-
pyridinium and bis-isoquinolinium series of compounds, but high-
lighted thatthebis-quinolinium serieswillbe the focus of futurestud-
ies on the design of non-symmetrical bisquaternary molecules.
Experimental section: All experimental details are listed in the
Supplementary data.
accommodated by
p–cationic interactions between Trp82 (3.5 Å)
and Trp231 (4.1 Å) and was further stabilized by interactions with
Phe329 (3.4 Å), Phe398 (3.8 Å), His438 (3.7 Å), Trp430 (3.6 Å) or
Tyr440 (3.1 Å). The top-scored docking pose of compound 22
(À9.48 kcal/mol) was stabilized differently to compound 12. Its
first quinolinium moiety was attached to Trp82 (3.3 Å) via a p–cat-
ionic interaction and stabilized by additional interactions with aro-
matic residues of His438 (3.7 Å), Trp430 (3.8 Å) or Tyr440 (3.0 Å).
The naphtalenyl linker was sandwiched between Phe329 (3.4 Å)
and Tyr332 (3.4 Å) by p–p interactions, whereas the second quin-
olinium moiety was found to be not interacting with hBChE aro-
Acknowledgements
matic residues. Concerning the in vitro results, both compounds
12 (0.1
l
M) and 22 (0.2
l
M) resulted in similar inhibitory abilities
This work was supported by the Grant Agency of the Czech
Republic (No. 203/09/P130), the Grant Agency of the Charles Uni-
versity (No. 117909/2009/B-CH/FaF), the Grant Agency of the Min-
istry of Education, Youth and Sports Czech Republic (No. SVV-
2010-261-001) and the Ministry of Health of the Czech Republic
(No. MZO00179906).
towards hBChE, although both compounds were found to bind in
different manners to hBChE. A plausible explanation of their simi-
lar inhibitory ability may consist in the accommodation of com-
pound 12 in the hBChE cavity which closes the entrance of the
active site Ser198, while compound 22 closes the narrow entrance
to this hBChE cavity between Phe329 and Tyr332 because it is a ri-
gid molecule.
Supplementary data
The SAR results with the bis-quinolinium series confirmed our
previous findings with bis-pyridinium and bis-isoquinolinium
compounds.18,19 Whereas the compounds bearing connecting link-
ers with heteroatoms, double bond or xylenyl moiety were found
to be inefficient cholinesterase inhibitors, compounds bearing a
methylenyl linkage produced promising AChE inhibitors, especially
compounds with a C7–C12 methylenyl linkage. The best in vitro
inhibitory results towards hAChE were obtained with a C10 linker
(1 nM) that corresponds with the best results for the bis-pyridini-
Supplementary data associated with this article can be found, in
References and notes
1. Ibach, B.; Haen, E. Curr. Pharm. Des. 2004, 10, 231.
2. Millard, C. B.; Broomfield, C. A. J. Neurochem. 1995, 64, 1909.
3. Bevan, D. R.; Donati, F.; Kopman, A. F. Anesthesiology 1992, 77, 785.
4. Drachman, D. Myasthenia gravis. In The Autoimmune Diseases; Rose, N., Mackay,
I., Eds., 3rd ed.; Academic Press: San Diego, 1998; p 637.
5. Tzartos, S. J.; Barkas, T.; Cung, M. T. Immunol. Rev. 1998, 163, 89.
6. Vincent, A.; Bowen, J.; Newsom-Davis, J. Lancet Neurol. 2003, 2, 99.
7. Santa, T.; Engel, A. G.; Lambert, E. H. Neurology 1972, 22, 71.
8. Richman, D. P.; Agius, M. A. Neurology 2003, 61, 1652.
9. Thanvi, B. R.; Lo, T. C. N. Postgrad. Med. J. 2004, 80, 690.
10. Yu, Q. S.; Holloway, H. W.; Luo, W.; Lahiri, D. K.; Brossi, A.; Greig, N. H. Bioorg.
Med. Chem. 2010, 18, 4687.
um series with a C10 linker (0.4 lM) and this is also favourable to
the best results with the bis-isoquinolinium series with a C8 link-
age (5 nM).18,19 However, bis-quinolinium compounds were found
to be slightly better than the bis-isoquinolinium series and thus
they will be the subject of further studies in the design and prep-
aration of non-symmetrical bisquaternary AChE inhibitors.
11. Scherer, K.; Bedlack, R. S.; Simel, D. L. J. Am. Med. Assoc. 2005, 293, 1906.
12. Hill, M. J. Neurol. Neurosurg. Psychiatry 2003, 74, S32.
13. Juel, V. C.; Massey, J. M. Curr. Treat. Options Neurol. 2005, 7, 3.
14. Froelich, J.; Eagle, C. J. Can. J. Anaesth. 1996, 43, 84.
15. Juel, V. C.; Massey, J. M. Orphanet J. Rare Dis. 2007, 2, 44.
16. Friedman, A.; Kauter, D.; Shemer, J.; Hendler, I.; Soreq, H.; Tur-Kaspa, I. Nat.
Med. 1996, 2, 1382.
17. Komloova, M.; Musilek, K.; Dolezal, M.; Gunn-Moore, F.; Kuca, K. Curr. Med.
Chem. 2010, 17, 1810.
18. Musilek, K.; Komloova, M.; Zavadova, V.; Holas, O.; Hrabinova, M.; Pohanka,
M.; Dohnal, V.; Nachon, F.; Dolezal, M.; Kuca, K.; Jung, Y.-S. Bioorg. Med. Chem.
Lett. 2010, 20, 1763.
19. Musilek, K.; Komloova, M.; Holas, O.; Hrabinova, M.; Pohanka, M.; Dohnal, V.;
Nachon, F.; Dolezal, M.; Kuca, K. Eur. J. Med. Chem. 2011, 46, 811.
20. Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I.
Science 1991, 253, 872.
21. Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303.
22. Hartwell, J. L.; Pogorelskin, M. A. J. Am. Chem. Soc. 1950, 72, 2040.
23. Ayers, J. T.; Dwoskin, L. P.; Deaciuc, A. G.; Grinevich, V. P.; Zhu, J.; Crooks, P. A.
Bioorg. Med. Chem. Lett. 2002, 12, 3067.
24. Geldenhuys, W. J.; Lockman, P. R.; Nguyen, T. H.; Van der Schyf, C. J.; Crooks, P.
A.; Dwoskin, L. P.; Allen, D. D. Bioorg. Med. Chem. 2005, 13, 4253.
25. Pohanka, M.; Jun, D.; Kuca, K. Talanta 2008, 77, 451.
26. Bois, R. T.; Hummel, R. G.; Dettbarn, W. D.; Laskowski, M. B. J. Pharmacol. Exp.
Ther. 1980, 215, 53.
27. Stieger, S.; Gentinetta, R.; Brodbeck, U. Eur. J. Biochem. 1989, 181, 633.
28. Khan, M. T. H.; Orhan, I. Chem. Biol. Interact. 2009, 181, 383.
29. Kryger, G.; Harel, M.; Gile, K.; Toker, L.; Velan, B.; Lazar, A.; Kronman, C.; Barak,
D.; Ariel, N. Acta Crystallogr., Sect D 2000, 56, 1385.
30. Ekstrom, F.; Pang, Y. P.; Bomann, M.; Artursson, E.; Akfur, C.; Borjegren, S.
Biochem. Pharmacol. 2006, 72, 597.
Figure 3. Molecular docking results for hBChE interactions with compound 12
(blue) and 22 (magenta).