Paper
Dalton Transactions
Crystal structure determination
7 (a) R. A. Benkeser and R. G. Severson, J. Am. Chem. Soc.,
1951, 73, 1424–1427; (b) H. Gilman and G. E. Dunn, J. Am.
Chem. Soc., 1951, 73, 5077–5079; (c) H. Gilman and
T. C. Wu, J. Am. Chem. Soc., 1951, 73, 4031–4033;
(d) H. Gilman, D. J. Peterson and D. Wittenberg, Chem.
Ind., 1958, 1479–1480.
8 H. Gilman and G. D. Lichtenwalter, J. Am. Chem. Soc., 1958,
80, 608–611.
9 B. Reiter and K. Hassler, J. Organomet. Chem., 1994, 467,
21–29.
10 H. Gilman and W. Steudel, Chem. Ind., 1959, 1094.
11 (a) F. Feher, P. Plichta and R. Guillery, Tetrahedron Lett.,
1970, 4443–4447; (b) F. Feher, P. Plichta and R. Guillery,
Tetrahedron Lett., 1970, 2889–2893.
12 (a) H. Sakurai, A. Okada, M. Kira and K. Yonezawa, Tetra-
hedron Lett., 1971, 1511–1514; (b) H. Sakurai and F. Kondo,
J. Organomet. Chem., 1975, 92, C46–C48; (c) E. Buncel,
T. K. Venkatachalam and U. Edlund, J. Organomet. Chem.,
1992, 437, 85–89.
13 J. G. Milligan and C. A. Kraus, J. Am. Chem. Soc., 1950, 72,
5297–5300.
14 (a) R. J. P. Corriu and C. Guerin, J. Chem. Soc., Chem.
Commun., 1980, 168–169; (b) J. L. Brefort, R. Corriu,
C. Guerin and B. Henner, J. Organomet. Chem., 1989, 370,
9–15.
X-ray diffraction data were collected on
a
Bruker
D8 goniometer with APEX CCD area-detector in ω-scan mode.
Mo-Kα radiation (multilayer optics, λ = 0.71073 Å) from an
Incoatec microsource was used. Temperature control was
achieved with an Oxford cryostream 700.
Determination of the unit cells of 2β, 3β and 4 and frame
processing was done with SAINT+.39 The low temperature
structures were indexed with CELL NOW.40 Multiscan absorp-
tion corrections were applied with SADABS41 for single crystal
data and TWINABS42 for the twinned data. Structures were
solved by direct methods (SHELXS40) and refined against F2
with SHELXL-13.40 Hydrogen atoms were included as riding
on calculated positions with Uiso(H) = 1.2Ueq.(non-H). Non-
hydrogen atoms were refined with anisotropic displacement
parameters in the well ordered parts. The disordered parts
were modeled using one isotropic displacement parameter for
all atoms in the disordered molecular fragment. In 2β all non-H
atoms of the crown ether could be found in the difference
Fourier map. In 3β only 1 reasonably high electron density
maximum could be found and the crown ether was con-
structed based on this position. Restraints were slowly released
to allow for stable refinement. In the final model of both struc-
tures C–C distances are restrained to be close to 1.42 Å and
C–O distances to 1.50 Å. The disordered thf molecules are
based on a constructed model that was placed in the void with
diffuse electron density and refined with the same distance
restraints. Full details of the refinement are given as ESI.†
15 E. Weiss, G. Hencken and H. Kuehr, Chem. Ber., 1970, 103,
2868–2872.
16 N. Wiberg, Coord. Chem. Rev., 1997, 163, 217–252.
17 (a) H. Gilman, J. M. Holmes and C. L. Smith, Chem. Ind.,
1965, 848–849; (b) H. Gilman and C. L. Smith, J. Organomet.
Chem., 1967, 8, 245–253; (c) G. Gutekunst and A. G. Brook,
J. Organomet. Chem., 1982, 225, 1–3; (d) C. Marschner,
Eur. J. Inorg. Chem., 1998, 221–226.
18 (a) K. W. Klinkhammer, Chem. – Eur. J., 1997, 3, 1418–
1431; (b) K. W. Klinkhammer and W. Schwarz, Z. Anorg.
Allg. Chem., 1993, 619, 1777–1789.
19 H. V. R. Dias, M. M. Olmstead, K. Ruhlandt-Senge and
P. P. Power, J. Organomet. Chem., 1993, 462, 1–6.
20 A. G. Brook and H. Gilman, J. Am. Chem. Soc., 1954, 76,
278–279.
21 C. Kleeberg, Z. Anorg. Allg. Chem., 2011, 637, 1790–
1794.
Acknowledgements
We thank Prof. U. Englert for helpful discussions regarding
single crystal X-ray diffraction. Financial support by the
Cluster “Tailor Made Fuels from Biomass” and the Fonds der
Chemischen Industrie is gratefully acknowledged. This paper
is dedicated to the memory of Prof. M. F. Lappert.
Notes and references
1 Z. Rappoport and Y. Apeloig, The Chemistry of Organic
Silicon Compounds, Wiley & Sons, New York, 2000.
2 (a) P. D. Lickiss and C. M. Smith, Coord. Chem. Rev., 1995,
22 C. Kleeberg and C. Borner, Eur. J. Inorg. Chem., 2013, 2799–
2806.
145, 75–124; (b) A. Sekiguchi, V. Y. Lee and M. Nanjo, 23 H. Gilman and T. C. Wu, J. Org. Chem., 1953, 18, 753–
Coord. Chem. Rev., 2000, 210, 11–45; (c) K. Tamao and
A. Kawachi, Adv. Organomet. Chem., 1995, 38, 1–58.
3 A. Hosomi and H. Sakurai, Tetrahedron Lett., 1976, 1295–
1298.
4 T. Mukaiyama, K. Narasaka and K. Banno, Chem. Lett.,
1973, 1011–1014.
764.
24 (a) E. Buncel, T. K. Venkatachalam, B. Eliasson and
U. Edlund, J. Am. Chem. Soc., 1985, 107, 303–306;
(b) U. Edlund, T. Lejon, P. Pyykkö, T. K. Venkatachalam
and E. Buncel, J. Am. Chem. Soc., 1987, 109, 5982–5985;
(c) U. Edlund, T. Lejon, T. K. Venkatachalam and E. Buncel,
J. Am. Chem. Soc., 1985, 107, 6408–6409.
5 D. J. Peterson, J. Org. Chem., 1968, 33, 780–784.
6 (a) Y. Hatanaka and T. Hiyama, J. Org. Chem., 1988, 53, 25 V. Leich, T. P. Spaniol, L. Maron and J. Okuda, Chem.
918–920; (b) T. Hiyama and Y. Hatanaka, Pure Appl. Chem., Commun., 2014, 50, 2311–2314.
1994, 66, 1471–1478; (c) T. Hiyama, J. Organomet. Chem., 26 B. Tecle, W. H. Ilsley and J. P. Oliver, Organometallics, 1982,
2002, 653, 58–61.
1, 875–877.
14320 | Dalton Trans., 2014, 43, 14315–14321
This journal is © The Royal Society of Chemistry 2014