104
The European Physical Journal Applied Physics
ferroelectric distortions caused by the existence of the
9. G. Maz ´e -Merceur, J.L. Bonnefoy, J. Garat, R. Mittra,
IEEE URSI/AP-S Proc., Chicago, 1992.
2
6
(sp) lone pair. Studies of frequency variations showed
a dispersion of permittivity that comes from a Debye 10. J. Grigas, J. Microwave Dielectric Spectroscopy of Di-
9
electrics and Related Materials, Gordon and Breach Sci.
type relaxation close to 10 Hz. This relaxation exists
Publi., 1994.
in both the paraelectric and ferroelectric regions and the
1
1
1. Y.M. Chen, J.Q. Liu, J. Comput. Phys. 53, 429 (1984).
2. The authors thank M. Decamp for preparation of ceramic
samples.
frequency of relaxation shows a minimum at the Curie
temperature Tc. As for BaTiO3, this relaxation can be
clarified by a potential model of double potential wells.
8
13. B. Chevalier, M. Chatard-Moulin, J.P. Astieret, P. Guillon,
J.C.M.M., Limoges, 1991.
The value of fr at Tc (∼ 9 × 10 Hz) for PLZT ceram-
ics is greater than that earlier obtained from ceramics of
1
1
1
1
1
4. M. Rzepecka, S. Stuchly, IEEE Trans. Instrum. Meas. IM-
8
BaTiO3 (fr ∼ 10 Hz). This result implies that the co-
24, 27 (1975).
4+
4+
operative motion between Ti and Zr ions in PLZT
ceramics is coherent within a shorter length of correla-
5. M. Stuchly, T. Athey, G. Samaras, G.E. Taylor, IEEE
Trans. Microwave Theory Tech. MTT-30, 87 (1982).
6. N.E. Belhaj, A. Fourier, IEEE Trans. Microwave Theory
Tech. MTT-34, 346 (1986).
7. S. Breton, P. Gelin, Y. Baziard, A. Gourdenne, Rev. Phys.
Appl. 23, 1249 (1988).
8. D.L. Gershon, J.P. Calame, Y. Carmel, T.M. Antonsen, M.
Hutcheon, IEEE. Trans. Microwave Theory Tech. MTT-
47, 1640 (1999).
4+
tion chains lc than that for only the Ti ions in BaTiO3
ceramics. Thanks to its particular configuration it is the
2+
Pb ion that plays an indirect but fundamental role. The
2+
3+
replacement of Pb by La has no effect on the relax-
ation frequency, but modifies the long range interactions
as well in the ferroelectric phase as in the paraelectric
phase.
19. G.P. Grant, R.N. Clarke, G.T. Symm, N.M. Spyrou, J.
Phys. E Sci. Instrum. 22, 757 (1989).
20. J.L. Miane, M. Ech-chaoui, Revue des composites et
mat ´e riaux avanc ´e s 2, 115 (1992).
References
2
2
2
2
2
2
2
2
1. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941).
2. K.S. Cole, R.H. Cole, J. Chem. Phys. 10, 98 (1942).
3. A. Von Hippel, Rev. Mod. Phys. 22, 221 (1950).
4. A. Von Hippel, Z. Phys. 133, 158 (1952).
1
2
3
4
5
6
7
8
. S. Kazaoui, J. Ravez, C. Elissalde, M. Maglione, Ferro-
electrics 135, 85 (1992).
. C. Elissalde, J. Ravez, P. Gaucher, Mater. Sci. Eng. B 20,
5. C. Kittel, Phys. Rev. 83, 458 (1951).
6. N.A. Pertsev, G. Arlt, J. Appl. Phys. 74, 4105 (1993).
7. W.P. Mason, B.T. Matthias, Phys. Rev. 74, 1622 (1948).
8. R. Comes, M. Lambert, A. Guiner, Solid State Commun.
318 (1993).
. H. Hassan, M. Maglione, M.D. Fontana, J. Handerek, J.
Phys.-Cond. Matter 7, 8697 (1995).
. A. Von Hippel, Dielectric and Waves (Artech House,
Boston, London, 1995).
. A. Von Hippel, Dielectric Materials and Applications
6, 715 (1968).
29. M. Maglione, R. Boher, A. Liodl, U. Thochli, Phys. Rev.
B 40, 11441 (1989).
30. S. Kazaoui, J. Ravez, Phys. Stat. Sol. 123, 165 (1991).
31. S. Kazaoui, J. Ravez, Proc. 8th IEEE-ISAF, 465 (1992).
32. G. Williams, D.C. Watts, Trans. Faraday, Soc. 66, 80
(
Artech House, Boston, London, 1995).
. M.N. Afssar, J.R. Birch, R.N. Clarke, Proc. of the IEEE
4, 183 (1986).
7
(
1970).
3. S. Havriliak, S. Negami, Polymer 8, 161 (1967).
. Dielectric properties of heterogeneous materials (Piers 6,
Ed. A. Priou, Elsevier, 1992).
. J.A. Carpenter, Mat. Res. Soc. Symp. Proc. 189, 477
3
34. D.W. Davidson, R.H. Cole, J. Chem. Phys. 19, 1484
(
1951).
(
1991).
To access this journal online:
www.edpsciences.org