12 (a) M. V. Smoluchowski, Z. Physik. Chem. (L eipzig), 1918, 92,
129; (b) P. Debye, T rans. Electrochem. Soc., 1942, 82, 265; (c) M.
Eigen, Z. Physik. Chem., (Wiesbaden), 1954, 1, 176.
Sauer and S. Gordon, J. Phys. Chem., 1979, 83, 1803; (g) D. D.
Davies, R. E. Huie and J. T. Herron, J. Chem. Phys., 1973, 59,
628; (h) J. Connor, A. VanRodselar, R. W. Fair and O. P.
Strausz, J. Am. Chem. Soc., 1971, 93, 560; (i) J. L. Jourdain, G.
Poulet and G. LeBras, J. Chem. Phys., 1982, 76, 5827; (k) M.
Meot-Ner (Mautner) and F. H. Field, J. Am. Chem. Soc., 1978,
100, 1356; (l) D. K. Sen Sharma and P. Kebarle, J. Am. Chem.
Soc., 1982, 104, 19; (m) R. Hiatt and S. W. Benson, J. Am. Chem.
Soc., 1972, 94, 6886.
13 C. Chiorboli, M. T. Indelli, M. A. Rampi-Scandola and F. Scan-
dola, J. Phys. Chem., 1988, 92, 156.
14 Estimated to be equal to that of methylviologen.15a
15 (a) C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G.
Whitten, B. P. Sullivan and J. K. Nagle, J. Am. Chem. Soc., 1979,
101, 4815; (b) W. E. Jones and M. A. Fox, J. Phys. Chem., 1994,
98, 5095.
16 As the quenching process is a bimolecular reaction this quantum
yield is not a characteristic property of the quencher or donor
but it is a function of the reaction conditions, especially of the
quencher concentration. With increasing quencher concentration
it approaches an upper limit. The quencher concentration in this
work is so high that this limit is reached.
27 V. D. Kiselev and J. G. Miller, J. Am. Chem. Soc., 1975, 97, 4036.
28 (a) O. Hammerich and V. D. Parker, Acta Chem. Scand. Ser. B,
1983, 37, 379; (b) J. B. Olson and T. H. Koch, J. Am. Chem. Soc.,
1986, 108, 756; (c) J. Wang, Ch. Doubleday, jr. and N. J. Turro, J.
Am. Chem. Soc., 1989, 111, 3692.
29 B. Reitstoen and V. D. Parker, J. Am. Chem. Soc., 1990, 112,
4968.
17 R. Frank and H. Rau, EPA Newsletter, 1999, 65, 39.
18 (a) A. E. Brodsky, L. L. Gordienko and L. S. Degtiarev, Electro-
chim. Acta, 1968, 13, 1095; (b) M. E. Peover, J. Chem. Soc., 1962,
4540; (c) A. Aumuller and S. Hunig, L iebigs Ann. Chem., 1986,
165; (d) H. Shalev and D. H. Evans, J. Am. Chem. Soc., 1989, 111,
2667; (e) R. G. Compton, B. A. Coles, M. B. G. Pilkington and D.
Bethell, J. Chem. Soc., Faraday T rans., 1990, 86, 663; (f) K.
Umemoto, Chem. L ett., 1985, 1415; (g) J. Posdorfer, M. Olbrich-
Stock and R. N. Schindler, Z. Phys. Chem., N. F. Munchen 1991,
171, 33.
30 (a) N. Sutin and B. M. Gordon, J. Am. Chem. Soc., 1961, 83, 70;
(b) J. N. Braddock and T. J. Meyer, J. Am. Chem. Soc., 1973, 95,
3158; (c) J. L. Cramer and T. J. Meyer, Inorg. Chem., 1974, 13,
1250.
31 E. Baggott and M. J. Pilling, J. Chem. Soc., Faraday T rans 1,
1983, 79, 221.
32 (a) N. J. Turro, G. F. Lehr, J. A. Butcher, R. A. Moss and W.
Guo, J. Am. Chem. Soc., 1982, 104, 1754; (b) R. A. Moss, W.
Lawrynowicz, N. J. Turro, I. R. Gould and Y. Cha, J. Am. Chem.
Soc., 1986, 108, 7028
19 (a) I. Piljac, M. Tkalcec and B. Grabaric, Anal. Chem. 1975, 47,
1369; (b) V. D. Bezuglyi, L. V. Shkodina and T. A. Alekseeva,
Soviet Electrochemistry, 1984, 19, 1282; (c) M. E. Peover and J. D.
Davies, J. Electroanal. Chem., 1963, 6, 46; (d) R. L. Blankespoor,
D. L. Schutt, M. B. Tubergen and R. L. DeJong, J. Org. Chem.,
1987, 52, 2059; (e) S. Lazarov, A. Trifonov and J. Panajotov, Z.
Phys. Chem., 1965, 233, 49.
33 (a) S. R. L. Fernando, U. S. M. Maharoof, K. D. Deshayes, T. H.
Kinstle and M. T. Ogawa, J. Am. Chem. Soc., 1996, 118, 5783; (b)
H. A. Garrera, J. J. Cosa and C. M. Previtali, J. Photochem. Pho-
tobiol. A: Chem., 1991, 56, 267; (c) R. B. Murphy and W. F.
Libby, J. Am. Chem. Soc. 1977, 99, 39; (d) H. Werner, E. O.
Fischer, B. Heckl and C. G. Kreiter, J. Organomet. Chem., 1971,
28, 367; (e) T. Shimomura, K. J. Tolle, J. Smid and M. Scwarc, J.
Am. Chem. Soc., 1967, 84, 796; (f) A.-M. Albrecht-Gary, C.
Dietrich-Buchecker, Z. Saad and J.-P. Sauvage, J. Chem., Soc.,
Chem. Commun., 1992, 280.
20 C. Chiorboli, F. Scandola and H. Kisch, J. Phys. Chem., 1986, 90,
2211.
21 Reaction spectra are available as supplementary material.¤
22 (a) R. M. Wightman, J. R. Cockrell, R. W. Murray, J. N. Burnett
and S. B. Jones, J. Am. Chem. Soc., 1976, 90, 2526; (b) J. L.
Roberts jr., H. Sugimoto, W. C. Barrette jr., and D. T. Sawyer, J.
Am. Chem. Soc., 1985, 107, 4556.
23 J. Mayer and R. Kraslukianis, J. Chem. Soc., Faraday T rans.,
1991, 87, 2943.
24 (a) W. R. Fawcett and G. Liu, J. Phys. Chem., 1992, 96, 4231; (b)
P. Suppan, J. Photochem. Photobiol. A: Chem., 1990, 50, 293.
25 We have eliminated the change of viscosity due to increasing salt
34 (a) M. Mozurkewich and S. W. Benson, J. Phys. Chem., 1984, 88,
6429; (b) K. N. Houk, and N. G. Rodan, J. Am. Chem. Soc., 1984,
106, 4293; (c) R. A. Marcus and N. Sutin, Inorg. Chem., 1975, 14,
213; (d) R. A. Marcus, J. Electroanal. Chem., 1977, 82, 9; (e) W.
Stiller, R. Schmidt, E. Muller and N. V. Shokierev, Z. Phys.
Chem. (Munich), 1992, 162, 119; (f) Y. Chen, A. Rauk and E.
Tschuikow-Roux, J. Phys. Chem., 1991, 95, 9900; (g) R. A.
Marcus and N. Sutin, Comments Inorg. Chem., 1986, 5, 119.
35 Experimental quantities are usually indicated by the double-
dagger symbol. The relationships are *Gt \ *G* [ RT ln (hZ/
concentration by
a
multiplicative correction: g \ g/g \
r
0
1 1
kT ); *SE \ *S* ] R ln (hZ/kT ) [ R; *HE \ *H* [ RT .34c
1 ] 0.018 c1N@a2ClO4 ] 0.73 cNaClO4 . In eqn. (1) the di†usion con-
trolled rate constants are dependent on g, but also the activation
controlled ones if they represent adiabatic reactions with the lon-
gitudinal relaxation times in the pre-exponential factor. (See e.g.
D. F. Calef and P. G. Wolynes, J. Chem. Phys., 1983, 78, 430,
3387; E. M. Kosower and D. Huppert, Annu. Rev. Phys. Chem.,
1986, 37, 127; G. Grampp, W. Harrer and W. Jaenicke, J. Chem.
Soc., Faraday T rans., 1, 1987, 83, 161.)
2
2
36 K. N. Houk, N. G. Rodan and J. Mareda, J. Am. Chem. Soc.,
1984, 106, 4291.
37 This is a simpliÐcation, Marcus deÐnes an (N [ 1)-dimensional
hypersurface, the set of conÐgurations which separate the reac-
tant and product conÐgurations to be the transition state (R. A.
Marcus, in Investigation of Rates and Mechanisms of Reactions,
ed. E. S. Lewis, T echniques of Chemistry, vol. VI, Part 1, ed. A.
Weissberger, J. Wiley & Sons, New York, London, Sydney,
Toronto, 1974, pp. 13È46.
26 (a) W. Roth, T. Bastigkeit and S. Boerner, L iebigs Ann., 1996,
1313; (b) Wei, J. Chem. Eng. Sci., 1996, 51, 2995; (c) M. Mozuir-
kewich, J. J. Lamb and S. W. Benson, J. Phys. Chem., 1984, 88,
6435; (d) J. J. Lamb, M. Mozuirkewich and S. W. Benson, J.
Phys. Chem., 1984, 88, 6441; (e) A. Menon and N. Sathyamurthy,
J. Phys. Chem., 1981, 85, 1021; (f) R.-R.Lii, R. A. Gorse, jr., M. C.
38 The form of the surfaces is dependent on the speciÐc reaction.
Houk and Rodan34b have arbitrarily used Morse curves, we have
also used parabolas for G, H and T S as well as a Gaussian for G
and a parabola for T S: It seems that for all forms of the surfaces
the situation of negative activation enthalpy can be reached when
the reaction parameters are chosen suitably.
¤ Supplementary material (SUP 57584, 6 pp.) deposited with the
British Library. Details are available from the Editorial Office.
Paper 9/02486G
3490
Phys. Chem. Chem. Phys., 1999, 1, 3481È3490