Mendeleev Commun., 2018, 28, 651–652
This work was supported by the Russian Foundation for Basic
Research (grant no. 17-03-00022a).
Me
Me
F3C
HO
CF3
CO
CBr3
1
D
MeOC6H5
Online Supplementary Materials
C
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2018.11.030.
2e (60%)
MeOC6H5
Me Me
F3C CF3
HO
References
1 D. W. Ball, J. W. Hill and R. J. Scott, The Basics of General, Organic,
and Biological Chemistry, v. 1.0, Flat World Knowledge, Irvington, NY,
2011.
2 J. D. LaZerte and R. J. Koshar, J. Am. Chem. Soc., 1955, 77, 910.
3 S.-Y. Zhang, F.-M. Zhang andY.-Q. Tu, Chem. Soc. Rev., 2011, 40, 1937.
4 Z. Ren, F. Mo and G. Dong, J. Am. Chem. Soc., 2012, 134, 16991.
5 (a) N. C. Deno, W. E. Billups, R. Fishbein, C. Pierson, R. Whalen and
J. C. Wyckoff, J. Am. Chem. Soc., 1971, 93, 438; (b) G. A. Olah, N.Yoneda
and R. Ohnishi, J. Am. Chem. Soc., 1976, 98, 7341.
OMe
3 (8–25%)
Scheme 2
In the case of anisole, the acylation product 2e was formed
along with small amounts of the alkylation product 3 in yields of
8–25% depending on the reaction conditions (Scheme 2). Small
amounts of 3 were detected by GC-MS spectra, when the reac-
tion of 1 with anisole and CBr4·2AlBr3 was performed in the
absence of CO.
6 (a) I. Akhrem, A. Orlinkov and M. Vol’pin, J. Chem. Soc., Chem.
Commun., 1993, 671; (b) I. Akhrem and A. Orlinkov, Chem. Rev., 2007,
107, 2037.
7 (a) I. S. Akhrem, J. Organomet. Chem., 2015, 793, 54; (b) I. S. Akhrem,
D. V. Avetisyan, L. V. Afanas’eva, O. I. Artyushin and N. D. Kagramanov,
Tetrahedron Lett., 2015, 56, 562; (c) I. S. Akhrem, D. V. Avetisyan, L. V.
Afanas’eva, A. V. Orlinkov, N. D. Kagramanov and P. V. Petrovskii,
Mendeleev Commun., 2011, 21, 323; (d) I. S. Akhrem, L. V. Afanas’eva,
I. M. Churilova, O. I. Artyushin and N. D. Kagramanov, Mendeleev
Commun., 2015, 25, 124;(e)I. S.Akhrem, D.V.Avetisyan, L.V.Afanas’eva,
O. I. Artyushin, N. D. Kagramanov and A. L. Sigan, Tetrahedron Lett.,
2017, 58, 4014.
8 (a) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis, Reactivity,
Applications,Wiley, 2005, DOI:10.1002/352760393X.ch1; (b)A. M. Thayer,
Chem. Eng. News, 2006, 84, 15; (c) K. Müller, C. Faeh and F. Diederich,
Science, 2007, 317, 1881; (d) J. Wang, M. Sánchez-Roselló, J. L. Aceña,
C. del Rozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok and H. Liu,
Chem. Rev., 2014, 114, 2432.
9 (a) M. R. G. da Costa, M. J. M. Curto, O. R. Furtado, S. S. Feio and
J. C. Roseiro, Russ. J. Bioorg. Chem., 2005, 31, 398 (Bioorg. Khim.,
2005, 31, 441); (b) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly
and N. A. Meanwell, J. Med. Chem., 2015, 58, 8315.
10 (a) Z. Xu, Z. Hang, L. Chai and Z.-Q. Liu, Org. Chem. Lett., 2016, 18,
4470; (b) B. Sam, T. Luong and M. J. Krische, Angew. Chem. Int. Ed.,
2015, 54, 5465.
11 (a) N.Yoneda,Y. Takahashi,Y. Fukuhara and A. Suzuki, Bull. Soc. Chem.
Jpn., 1986, 59, 2819; (b) N. Yoneda, H. Sato, T. Fukuhara, Y. Takahashi
and A. Suzuki, Chem. Lett., 1983, 19.
12 I. S. Akhrem, L. V. Afanas’eva, S. V. Vitt and P. V. Petrovskii, Mendeleev
Commun., 2002, 180.
13 A. V. Orlinkov, I. S. Akhrem and M. E. Vol’pin, Russ. Chem. Rev., 1991,
60, 524 (Usp. Khim., 1991, 60, 1049).
14 R. H. Nobes, W. J. Bouma and L. Radom, J. Am. Chem. Soc., 1983, 105,
309.
Earlier, we observed the examples of alkylation of nucleo-
philes with cations XCnH2n (to form the alkylation products
+
similar to 3) in analogous reactions.7(c)–(e) The formation of
alkylation products in CO atmosphere shows that generation of
acylium cations can be reversible.13 Indeed, while the decarbonyla-
tion of MeCO+ is endothermic14 (by ~340 kJ mol–1), the acylium
salts, R3CCO+ (R = Me15, Ph16) are decarbonylated even at low
temperature.
When ethanol was applied as a nucleophile, the conversion of
substrate 1 was not full, and HOC(CF3)2(CH2)5CMe2C(O)OEt
was produced in a mixture with nonreacted compound 1. The
structure of this ester was supported by GC-MS spectra (M+ + H =
= 353). The use of octanethiol as a nucleophile led to the target
thioester HOC(CF3)2(CH2)5CMe2C(O)SC8H17 (M+ + H = 453)
in a mixture with the dimeric dioctyl disulfide (M+ + H = 291),
whose structure was proved by comparison with the authentic
C8H17SSC8H17.
At 0°C under CO atmosphere in the presence of CBr4·2AlBr3,
compound 1 underwent oxidative functionalization to give a
mixture of four isomeric cyclic esters with M+ = 306 (the
conversion within 2 h reached 92%). The reaction probably
involved the generation of acylium cation D followed by its
addition to the oxygen atom to form oxonium ion E which in
turn eliminated proton and underwent cyclization (Scheme 3).
Based on the NMR and GC-MS spectra of the isomeric mixture,
structures 4a and 4b were assigned to the main isomers.
15 G. A. Olah, W. S. Tolgyesi, S. J. Kuhn, M. E. Moffatt, I. J. Bastien and
E. B. Baker, J. Am. Chem. Soc., 1963, 85, 1328.
16 H. Hogeveen, in Advances in Physical Organic Chemistry, ed. V. Gold,
Academic Press, London, 1973, vol. 10, p. 29.
F3C CF3
O
+
Me
Me
CBr3
CO
O
H
1
D
E
CF3
CF3
O
O
O
O
+
+ (isomers)
CF3
CF3
Me
Bu
Et
Pr
4a
4b
Scheme 3
Received: 28th April 2018; Com. 18/5563
– 652 –