´
L. Dobrzanska et al. / Journal of Molecular Structure 796 (2006) 107–113
113
Fig. 10. Capped-stick representation of the one-dimensional coordination polymer of compound 10. Note that the paddle–wheel motif forms a linear coordination
node while the distorted square planar moiety forms a bent coordination node.
monodentate acetate anions. The other end of the cis ligand 3 is
coordinated to a symmetry-related instance of the square planar
copper ion, which is in turn linked via another ditopic ligand 3
to a paddle–wheel motif. The one-dimensional chain described
above forms an approximate sine wave parallel to [101] with
the paddle–wheel motifs situated on the horizontal axis of the
wave. At the square planar copper node, each of the non-
coordinated acetate oxygen atoms accepts a hydrogen bond
from a methanol solvent molecule situated in the lattice
References
[1] S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 43 (2004)
2334.
[2] O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi,
J. Kim, Nature 423 (2003) 705.
[3] A.N. Khlobystov, A.J. Blake, N.R. Champness, D.A. Lemenovskii,
A.G. Majouga, N.V. Zyk, M. Schroder, Coord. Chem. Rev. 222 (2001)
155.
[4] M.J. Rosseinsky, Microporous Mesoporous Mater. 73 (2004) 15.
[5] B. Moulton, M. Zawarotko, Chem. Rev. 101 (2001) 1629.
[6] B. Sui, J. Fan, T.-A. Okamura, W.-Y. Sun, N. Ueyama, Solid State Sci. 7
(2005) 969.
˚
(donor—acceptor distances of 2.90(2) and 2.83(2) A).
4. Conclusion
[7] B.F. Hoskins, R. Robson, D.A. Slizys, J. Am. Chem. Soc. 119 (1997)
2952.
We have shown that ditopic imidazole-based ligands can
have rich coordination chemistry for the purposes of
constructing a range of coordination polymers. These ligands
can be synthesised with relative ease and functionalised with
bulky substituents on the imidazole rings and also linked by
means of a variety of spacer groups. Owing to the versatile
ability of imidazole ligands to bind a range of metal ions, it is
envisioned that further studies will facilitate the construction of
interesting new coordination polymeric materials.
[8] Y. Gao, B. Twamley, J.M. Shreeve, Inorg. Chem. 45 (2006) 1150.
[9] C.-L. Chen, A.M. Goforth, M.D. Smith, C.-Y. Su, H.-C. zur Loye, Inorg.
Chem. 44 (2005) 8762.
´
[10] L. Dobrzanska, H.G. Raubenheimer, L.J. Barbour, Chem. Commun.
(2005) 5050.
[11] J. Yang, J.-F. Ma, Y.-Y. Liu, S.-L. Li, G.-L. Zheng, Eur. J. Inorg. Chem.
11 (2005) 2174.
[12] J.-F. Ma, J. Yang, G.-L. Zheng, L. Li, J.-F. Liu, Inorg. Chem. 42 (2003)
7531.
[13] L. Wen, Y. Li, Z. Lu, J. Lin, C. Duan, Q. Meng, Cryst. Growth Des.
6 (2006) 530.
´
[14] L. Dobrzanska, G.O. Lloyd, H.G. Raubenheimer, L.J. Barbour, J. Am.
Acknowledgements
Chem. Soc. 127 (2005) 13134.
´
[15] L. Dobrzanska, G.O. Lloyd, H.G. Raubenheimer, L.J. Barbour, J. Am.
Financial support was provided by the National Research
Foundation of South Africa and LD thanks the Claude Harris
Leon Foundation for a postdoctoral fellowship.
Chem. Soc. 128 (2006) 698.
[16] L. Carlucci, G. Ciani, D.M. Proserpio, Chem. Commun. (2004) 380.
[17] R.H. Blessing, Acta Crystallogr. A51 (1995) 33–38.
¨
[18] G.M. Sheldrick, SHELXS-97 and SHELXL97, University of Gottingen,
Germany.
Supplementary data
[19] L.J. Barbour, J. Supramol. Chem. 1 (2001) 189.
[20] J.L. Atwood, L.J. Barbour, Cryst. Growth Des. 3 (2003) 3.
[21] H.K. Liu, J. Hu, T.W. Wang, X.L. Yu, J. Liu, B. Kang, J. Chem. Soc.,
Dalton Trans. (2001) 3534.
Supplementary data associated with this article can be found,