SHORT COMMUNICATION
acteristic ν(Ru–O) band at 514 cm–1 (Figure 6), increases
the acidity of the proton of this phenolic group.
Experimental Section
Supporting Information (see footnote on the first page of this arti-
cle): General methods and chemicals, syntheses and characteriza-
tion of complexes 3a–d and 4, procedures of catalytic tests.
In turn, such a situation facilitates the formation of the
hydrogen bond between the more acidic OH group and the
oxygen atom of the water molecule, as calculated and
shown in Figure 8. The proton of the phenolic group in the
polarizable hydrogen-bonded system in the six-membered
ring is strongly delocalised between two oxygen atoms and
therefore the ν(O–H) absorption of the phenolic group van-
ishes. PM6 calculations of this structure revealed the pos-
sibility of relatively stable hydrogen bonding of the water
molecule with complex 4 because calculated parameters for
intermolecular hydrogen bonds are: (H2O)O–H···Cl (length
2.6 Å, angle 153°) and (H2O)HO···H–O(phenol) (length
2.8 Å, angle 174°).
Complex 4 was tested in ROMP of cod and was found
to exhibit catalytic activity significantly higher than that of
complex 3a activated with HCl (2 equiv.; Figure 9). This
test clearly demonstrates the importance of activation of the
phenolate ring for the catalytic activity of aryloxybenzyl-
idene complexes.
Acknowledgments
Financial support from the National Science Centre (Poland), (pro-
ject no. UMO-2011/03/B/ST5/01047) is gratefully acknowledged.
[1] For recent reviews on olefin metathesis in organic Synthesis
see: a) J. Cossy, S. Arseniyadis, C. Meyer (Eds.), Metathesis in
Natural Product Synthesis: Strategies, Substrates and Catalysts,
Wiley-VCH, 2010; b) S. P. Nolan, H. Clavier, Chem. Soc. Rev.
2010, 39, 3305–3316; c) R. H. Grubbs, A. G. Wenzel, A. K.
Chatterjee, in Comprehensive Organometallic Chemistry III,
Vol. 11 (Ed.: T. Hiyama), Elsevier, Amsterdam, 2006, pp. 179–
205; d) J. Mulzer, E. Ohler, T. Gaich in Comprehensive Organo-
metallic Chemistry III, Vol. 11 (Ed.: T. Hiyama), Elsevier, Am-
sterdam, 2006, pp. 207–269; e) K. C. Nicolaou, P. G. Bulger,
D. Sarlah, Angew. Chem. 2005, 117, 4564; Angew. Chem. Int.
Ed. 2005, 44, 4490–4527; f) Handbook of Metathesis (Ed.:
R. H. Grubbs), Wiley-VCH, Weinheim, 2003.
[2] For recent reviews on olefin metathesis in polymer chemistry,
see: a) H. Mutlu, L. Montero de Espinosa, M. A. R. Meier,
Chem. Soc. Rev. 2011, 40, 1404–1445; b) K. L. Opper, K. B.
Wagener, J. Polym. Sci., Part A J. Polym. Sci., Part A: Polym.
Chem. 2011, 49, 821–831; c) U. H. F. Bunz, D. Maeker, M.
Porz, Macromol. Rapid Commun. 2012, 33, 886–910; d) S. Sut-
thasupa, M. Shiotsuki, F. Sanda, Polym. J. 2010, 42, 905–915;
e) A. Leitgeb, J. Wappel, C. Slugovc, Polymer 2010, 51, 2927–
2946; f) D. E. Fogg, H. M. Foucault in Comprehensive Organo-
metallic Chemistry III, Vol. 11 (Ed.: T. Hiyama), Elsevier, Am-
sterdam, 2006, pp. 623–652.
[3] For recent reviews on well-defined ruthenium-based catalysts
of olefin metathesis, see: a) F. B. Hamad, T. Suna, S. Xiao, F.
Verpoort, Coord. Chem. Rev. 2013, 257, 2274–2292; b) S. Kress,
S. Blechert, Chem. Soc. Rev. 2012, 41, 4389–4408; c) E. B. An-
derson, M. R. Buchmeiser, Synlett 2012, 23, 185–207; d) G. C.
Vougioukalakis, R. H. Grubbs, Chem. Rev. 2010, 110, 1746–
1787; e) A. M. Lozano-Vila, S. Monsaert, A. Bajek, F. Ver-
poort, Chem. Rev. 2010, 110, 4865–4909; f) C. Samojłowicz, M.
Bieniek, K. Grela, Chem. Rev. 2009, 109, 3708–3742.
[4] For a review on latent catalysts, see: a) Y. Vidavsky, A. Anaby,
N. G. Lemcoff, Dalton Trans. 2012, 41, 32–43; b) A. Szadkow-
ska, K. Grela, Curr. Org. Chem. 2008, 12, 1631–1647; c) S.
Monsaert, A. Lozano Vila, R. Drozdzak, P. Van Der Voort, F.
Verpoort, Chem. Soc. Rev. 2009, 38, 3360–3372.
[5] R. Gawin, A. Makal, K. Wozniak, M. Mauduit, K. Grela, An-
gew. Chem. 2007, 119, 7344; Angew. Chem. Int. Ed. 2007, 46,
7206–7209.
Figure 9. ROMP of cod. Conditions: cat. (0.1 mol-% in relation to
cod), 0.5 m, CH2Cl2, 40 °C. Black squares: complex 3a, blue circles:
complex 3a activated with HCl (2 equiv.), red circles: complex 4.
[6] T. Wdowik, C. Samojłowicz, M. Jawiczuk, M. Malinska, K.
Wozniak, K. Grela, Chem. Commun. 2013, 49, 674–676.
[7] C. Pietraszuk, S. Rogalski, B. Powała, M. Mietkiewski, M. Ku-
bicki, G. Spolnik, W. Danikiewicz, K. Wozniak, A. Pazio, A.
Szadkowska, A. Kozłowska, K. Grela, Chem. Eur. J. 2012, 18,
6465–6469.
Conclusion
[8] a) J. C. Conrad, D. Amoroso, P. Czechura, G. P. A. Yap, D. E.
Fogg, Organometallics 2003, 22, 3634–3636; b) S. Monfette,
D. E. Fogg, Organometallics 2006, 25, 1940–1944; c) J. C. Con-
rad, H. H. Parnas, J. L. Snelgrove, D. E. Fogg, J. Am. Chem.
Soc. 2005, 127, 11882–11883; d) S. Monfette, K. D. Camm,
S. I. Gorelsky, D. E. Fogg, Organometallics 2009, 28, 944–946.
[9] a) M. Jovic, S. Torker, P. Chen, Organometallics 2011, 30, 3971–
3980; b) G. Occhipinti, H.-R. Bjørsvik, K. W. Tornroos, V. R.
Jensen, Organometallics 2007, 26, 5803–5814; c) J. S. M. Samec,
B. K. Keitz, R. H. Grubbs, J. Organomet. Chem. 2010, 695,
1831–1837.
New stable aryloxybenzylidene ruthenium complexes
have been synthesised and characterised. The catalysts are
substantially stable and catalytically inactive (or poorly
active) in their dormant forms. However, a significant in-
crease in activity is observed after “switching on” by ad-
dition of a solution of HCl in ether. A mechanism of acti-
vation that involves the formation of an isolable catalyti-
cally active hydroxybenzylidene complex has been pro-
posed.
Eur. J. Inorg. Chem. 2014, 1131–1136
1135
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim