1224
P. Rajakumar et al. / European Journal of Medicinal Chemistry 45 (2010) 1220–1224
6.2.3. Dendrimer 1c
Acknowledgements
Yield 65%; mp 154 ꢀC; IR (KBr, cmꢁ1): 1646 (C]O); 1H NMR
(300 MHz, CDCl3)
d
: 1.68 (bs, 2H), 2.79 (bs, 4H), 5.01 (s, 4H), 5.05
The authors thank CSIR India, for financial assistance, DST-FIST
for providing NMR facility to the department. SAIF, CDRI Lucknow
and SAIF, IIT Madras for mass spectral data. NV thanks DST, New
Delhi for fellowship.
(s, 8H), 5.16 (s, 16H), 6.65(s, 2H), 6.70–6.78 (m, 16H), 6.92 (d, 4H,
J ¼ 8.7 Hz), 7.25–7.28 (m, 12H), 7.34–7.39 (m, 36H), 7.56–7.58 (m,
20H), 7.65 (d, 16H, J ¼ 8.1 Hz), 7.71 (s, 2H), 8.11 (d, 16H, J ¼ 7.5 Hz);
13C NMR (75 MHz, CDCl3)
d: 22.7, 28.5, 69.8, 69.9, 70.1, 101.8, 106.8,
109.8, 114.6, 114.8, 120.1, 120.4, 123.5, 126.0, 127.2, 128.5, 129.1,
132.3, 134.4, 135.9, 136.4, 137.6, 139.5, 14 0.8, 158.9, 160.2, 189.9; m/z
(MALDI-TOF-MS): 3105 (M þ Naþ). Elemental Anal. Calcd for
C214H158N8O15: C, 83.41; H, 5.17; N, 3.64. Found: C, 83.27; H, 5.04; N,
3.78.
References
ˇ
[1] (a) S. Hecht, J.M.J. Frechet, Angew. Chem. Int. Ed. Engl. 40 (2001) 74–91;
(b) D.L. Jiang, T. Aida, Chem. Commun. (1996) 1523–1524.
[2] (a) U. Boas, P.M.H. Heegaard, Chem. Soc. Rev. 33 (2004) 43–63;
(b) L. Balogh, D.R. Swanson, D.A. Tomalia, G.L. Hagnauer, A.T. McManus, Nano
Lett. 1 (2001) 18–21.
6.2.4. Dendrimer 1d
[3] J. Recker, D.J. Tomcik, J.R. Parquette, J. Am. Chem. Soc. 122 (2000) 10298–
10307.
[4] (a) B.P. Hay, E.J. Werner, K.N. Raymond, Bioconjug. Chem. 15 (2004) 1496–
1502;
Yield 70%; mp 156–158 ꢀC; IR (KBr, cmꢁ1): 1648 (C]O); 1H NMR
(300 MHz, CDCl3) d: 1.67 (bs, 2H), 2.78 (bs, 4H), 4.94 (s, 4H), 4.96 (s,
8H), 5.00 (s, 16H), 5.10 (s, 32H), 6.63–6.66 (m, 20H), 6.70–6.75 (m,
24H), 7.22–7.26 (m, 39H), 7.30–7.38 (m, 60H), 7.51–7.53 (m, 31H),
7.58–7.69 (m, 35H), 8.07 (s, 6H), 8.08–8.11 (m, 29H); 13C NMR
(b) M. Doubrovin, I. Serganova, P. Mayer-Kuckuk, V. Ponomarev, R.G. Blasberg,
Bioconjug. Chem. 15 (2004) 1376–1388.
[5] M.J. Cloninger, Curr. Opin. Chem. Biol. 6 (2002) 742.
[6] Y.Y. Cheng, J.R. Wang, T.L. Roa, X.X. He, T.W. Xu, Front. Biosci. 13 (2008) 1447–
1471.
(75 MHz, CDCl3) d: 21.9, 28.7, 68.6, 68.8, 68.9, 100.6, 105.5, 108.6,
ˇ
[7] K. Kono, M. Liu, J.M.J. Frechet, Bioconjug. Chem. 10 (1999) 1115–1121.
113.1, 113.7, 114.4, 118.9, 119.3, 122.3, 124.9, 126.1, 127.3, 128.0, 130.4,
131.2, 131.4, 132.9, 133.4, 134.8, 135.2, 136.4, 138.3, 138.4, 139.7,
155.8, 157.8, 159.1, 161.5, 189.1; m/z (MALDI-TOF-MS): 6124
(M þ Naþ). Elemental Anal. Calcd for C422H310N16O31: C, 83.06; H,
5.12; N, 3.67. Found: C, 83.19; H, 5.22; N, 3.54.
[8] V. Maraval, J. Pyzowski, A.M. Caminade, J.P. Majoral, J. Org. Chem. 68 (2003)
6043–6046.
[9] P. Wu, A.K. Feldman, A.K. Nugent, C.J. Hawker, A. Scheel, B. Voit, J. Pyun,
ˇ
J.M.J. Frechet, K.B. Sharpless, V.V. Fokin, Angew. Chem. Int. Ed. 43 (2004)
3928–3932.
[10] S. Shkla, G. Wu, M. Chatterjee, W. Yang, M. Sekido, L.A. Diop, R. Mullar,
J.J. Sudimack, R.J. Lee, R.F. Barth, W. Tjarks, Bioconjug. Chem. 14 (2003)
158–167.
[11] Y.Y. Cheng, N. Man, T.W. Xu, R.Q. Fu, X.Y. Wang, X.M. Wang, L.P. Wen, J. Pharm.
Sci. 96 (2007) 595–602.
6.3. Biological activity
[12] N. Nagahori, R.T. Lee, S.I. Nishimura, ChemBioChem 3 (2002) 836.
[13] Y. Li, Y.Y. Cheng, T.W. Xu, Curr. Drug Discov. Technol. 4 (2007) 246–254.
[14] P. Rajakumar, K. Ganesan, Synlett (2004) 2236.
[15] P. Rajakumar, K. Ganesan, S. Jayavelu, K. Murugesan, Synlett (2005) 1121.
[16] P. Rajakumar, K. Ganesan, Tetrahedron Asymmetry (2005) 2295.
[17] Y.Y. Cheng, T.W. Xu, Eur. J. Med. Chem. 43 (2008) 2291–2297.
[18] Y.Y. Cheng, Y. Gao, T.L. Roa, Y.W. Li, T.W. Xu, Comb. Chem. High Throughput
Screen. 10 (2007) 336–349.
[19] W. Yang, Y.Y. Cheng, T.W. Xu, X.Y. Wang, L.P. Wen, Eur. J. Med. Chem. 44 (2009)
862–868.
[20] H. Nemoto, J. Miyta, M. Yoshida, N. Raku, K. Fukumoto, J. Org. Chem. 62 (1997)
7850.
[21] E. Sciraufstattel, H. Bernt, Nature 164 (1947) 456.
[22] H.J. Knolker, K.R. Reddy, Chem. Rev. 102 (2002) 4303–4427.
[23] J. Gao, K. Igarashi, M. Nukina, Chem. Pharm. Bull. 48 (1999) 1075–1078.
[24] J.C. Antilla, A. Klapara, S.L. Buchwald, J. Am. Chem. Soc. 124 (2002) 11684.
[25] Hu Fenglin, Lu Ruili, Huang bao, Ming Liang, Fitoterapia 75 (2004)
14–23.
[26] Y. Rajeshwar, G.P. Senthil kumar, M. Gupta, U.K. Mazumdar, European Bulletin
of Drug Research 13 (2005) 31–39.
[27] C.Y. Lee, A. Sharma, J.E. Cheong, J.L. Nelson, Bioorg. Med. Chem. Lett. 19 (2009)
6326–6330.
6.3.1. Antioxidant studies
Antioxidant activity of all the dendrimers studied by the method
used to determine the free radical scavenging activity. Samples
were prepared at various concentrations of 20, 40, 60, 80, 100, 250,
500, 750 and 1000 mg/ml and 0.1 ml of this solution is mixed with
0.5 ml of DPPH solution in ethanol. After 30 min the absorption was
measured at the wavelength 517 nm on Beckman UV–vis spec-
trometer. Every measurement was repeated three times. From the
absorption value, percentage of activity was calculated using
the formula. Percentage Activity ¼ [As ꢁ Ab/Ac ꢁ Ab] ꢂ 100, where
As – absorbance of DPPH solution with a tested solution (test),
Ab – absorbance of a DPPH solution with a blank without sample
and DPPH, Ac – Control with DPPH solution without sample solu-
tion. The antiradical activity was defined as the concentration of
a sample showing the DPPH radical scavenging activity and
determined from the graph (Fig. 1) in which concentration and
reduction activity were plotted against each other.
[28] Y.Y. Cheng, Z. Xu, M. Ma, T.W. Xu, J. Pharm. Sci. 97 (2008) 123–143.