10.1002/anie.201811946
Angewandte Chemie International Edition
COMMUNICATION
[3]
a) O. W. Webster, W. R. Hertler, D. Y. Sogah, W. B. Farnham, T. V.
Rajanbabu, J. Am. Chem. Soc. 1983, 105, 5706-5708; b) O. W.
Webster, J. Polym. Sci. Part A: Polym. Chem. 2000, 38, 2855-2860; c)
M.R. Kalourkoti, O. W. Webster, C. S. Patrikios, Group Transfer
Polymerization Encyclopedia of Polymer Science and Technology;
John Wiley
&
Sons, Inc., 2013, Vol. 99, pp 1-17. DOI:
10.1002/0471440264.pst603.
[4]
[5]
a) K. Matyjaszewski, eds. Controlled/Living Radical Polymerization:
Progress in ATRP, ACS Symposium Series; American Chemical
Society: Washington, DC, 2009; b) A. Anastasaki, V. Nikolaou, G.
Nurumbetov, P. Wilson, K. Kempe, J. F. Quinn, T. P. Davis, M. R.
Whittaker, D. M. Haddleton, Chem. Rev. 2016, 116, 835-877; c) M.
Ouchi, M. Sawamoto, Macromolecules 2017, 50, 2603-2614.
a) V. Percec, T. Guliashvili, J. S. Ladislaw, A. Wistrand, A. Stjerndahl,
M. J. Sienkowska, M. J. Monteiro, S. Sahoo, J. Am. Chem. Soc, 2006,
128, 14156-14165; b) B. Mao, L. Gan, Y. Gan, Polymer 2006, 47,
3017-3020; c) R. W. Simms, M. F. Cunningham, Macromolecules
2007, 40, 860-866; d) L. Mueller, W. Jakubowski, K. Matyjaszewski, J.
Pietraskik, P. Kwiatkowski, W. Chaladaj, J. Jurczak, Eur. Polym. J.
2011, 47, 730-734; e) E. Read, A. Guinaudeau, D. J. Wilson, A. Cadix,
F. Violleau, M. Destarac, Polym. Chem. 2014, 5, 2202-2207; f) N. P.
Truong, M. V. Dussert, M. R. Whittaker, J. F. Quinn, T. P. Davis,
Polym. Chem. 2015, 6, 3865-3874; g) Z, Huang, J. Chen, L. Z. Zhang,
Z. Cheng, X. Zhu, Polymer 2016, 8, 59; h) Z. Liu, Y. Lv, Z. An, Angew.
Chem. Int. Ed. 2017, 56, 13852-13856; i) R. N. Carmean, T. E. Becker,
M. B. Sims, B. S. Sumerlin, Chem 2017, 2, 93-101.
Figure 3. X-ray crystal structure of IAP2-CH2C(Me)=C(OMe)OAl(C6F5)3.
Hydrogen and Fluorine atoms are omitted for clarity and ellipsoids drawn at
50% probability.
[6]
[7]
[8]
[9]
J. Rzayev, J. Penelle, Angew. Chem. Int. Ed. 2004, 43, 1691-1694;
Angew. Chem. 2004, 116, 1723-1726.
T. Arita, Y. Kayama, K. Ohno, Y. Tsujii, T. Fukuda, Polymer 2008, 49,
2426-2429.
S. K. Varshney, J. P. Hautekeer, R. Fayt, R. Jérôme, Ph. Teyssié,
Macromolecules 1990, 23, 2618-2622.
J.P. Hautekeer, S. K. Varshney, R. Fayt, C. Jacobs, R. Jérôme, Ph.
Teyssié, Macromolecules 1990, 23, 3893-3898
[10] a) E. Y.-X. Chen, Top. Curr. Chem. 2013, 334, 239-260; b) E. Piedra-
Arroni, A. Amgoune, D. Bourissou, Dalton Trans. 2013, 42, 9024-
9029; c) Y. Zhang, G. M. Miyake, E. Y.-X. Chen, Angew. Chem. Int.
Ed. 2010, 49, 10158-10162; Angew. Chem. 2010, 122, 10356-10360;
d) Y. Zhang, G. M. Miyake, M. G. John, L. Falivene, L. Caporaso, L.
Cavallo, E. Y.-X. Chen, Dalton Trans. 2012, 41, 9119-9134; e) T. Xu,
E. Y.-X. Chen, J. Am. Chem. Soc. 2014, 136, 1774-1777; f) J. He, Y.
Zhang, E. Y.-X. Chen, Synlett. 2014, 25, 1534-1538; g) Y. Jia, W. Ren,
S. Liu, T. Xu, Y. Wang, X. Lu, ACS Macro Lett. 2014, 3, 896-899; h) J.
Chen, E. Y.-X. Chen, Isr. J. Chem. 2015, 55, 216-225; i) P. Xu, X. Xu,
ACS Catal. 2018, 8, 198-202; j) E. Piedra-Arroni, C. Ladaviere, A.
Amgoune, D. Bourissou, J. Am. Chem. Soc. 2013, 135, 13306-13309;
k) J. Zhu, E. Y.-X. Chen, J. Am. Chem. Soc. 2015, 137, 12506-12509;
l) X. Li, B. Wang, H. Ji, Y. Li, Catal. Sci. Technol. 2016, 6, 7763-7772;
m) Q. Wang, W. Zhao, J. He, Y. Zhang, E. Y.-X. Chen,
Macromolecules 2017, 50, 123-136; n) H. Zhang, Y. Nie, X. Zhi, H. Du,
J. Yang, Chem. Commun. 2017, 53, 5155-5158; o) H. Ji, B. Wang, L.
Pan, Y. Li, Green Chem. 2018, 20, 641-648; p) J. Yang, H. Wu, Y. Li,
X. Zhang, D. Darensbourg, Angew. Chem. Int. Ed. 2017, 56, 5774-
5779; Angew. Chem. 2017, 129, 5868-5873; q) C. Zhang, H. Wu, Y. Li,
J. Yang, X. Zhang, Nat. Commun. 2018, 9, 2137; r) M. G. Knaus, M. M.
Giuman, A. Pöthig, B. Rieger, J. Am. Chem. Soc. 2016, 138, 7776-
7781; s) W. Ottou, E. Conde-Mendizabal, A. Pascual, A.-L Wirotius, D.
Bourichon,; J. Vignolle, F. Robert, Y. Landais, J.-M. Sotiropoulos, K.
Miqueu, Macromolecules 2017, 50, 762-774; t) P. Xu, Y. Yao, X. Xu,
Chem. Eur. J. 2017, 23, 1263-1267; u) M. Wang, F. Nudelman, R. R.
Matthes,; M. P. Shaver, J. Am. Chem. Soc. 2017, 139, 14232-14236;
v) Y. Hosoi, A. Takasu, S. Matsuoka, M. Hayashi, J. Am. Chem. Soc.
2017, 139, 15005-15012.
Figure 4. GPC traces of PMMA obtained from the polymerization performed
using different activation procedures
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (Grant no. 21422401, 21774042,
21871107, 21374040).
Keywords: frustrated Lewis Pair • living polymerization •
organoaluminum • organophosphorus superbase • ultrahigh
molecular weight polymer
[1]
[2]
a) N. Hadjichristidis, A. Hirao, Anionic Polymerization: Principles,
Practice, Strength, Consequences and Applications, Springer, 2015;
b) D. Baskaran, Prog. Polym. Sci. 2003, 28, 521-581.
a) K. Matyjaszewski, eds. "Cationic Polymerization of Heterocyclics."
Cationic Polymerizations. CRC Press, 1996. 451-568; b) A. Kanazawa,
S. Kanaoka, S. Aoshima, Chem. Lett. 2010, 39, 1232-1237; c) Y.
Kwon, R. Faust, Adv. Polym. Sci. 2004, 167, 107-136.
[11] Selected some reviews and recent examples on activation of small
molecules by FLPs: a) D. W. Stephan, Science 2016, 354, aaf7229; b)
D. W. Stephan, G. Erker, Angew. Chem. Int. Ed. 2015, 54, 6400-6441;
This article is protected by copyright. All rights reserved.