+
Selective Ca2 Sensing
A R T I C L E S
One of the important criteria for the designing of chemosen-
sors is the selection of the signaling unit, which should produce
a strong signal, preferably as a visual color change (chromoge-
nic), upon an analyte binding. Organic dyes, particularly
squaraine dyes whose optical properties are sensitive to the
surrounding media, are ideal for this purpose. Although
squaraine dyes have been used for the design of chemosensors,11
the selectivity and sensitivity of most of these sensors are poor
except in a very few cases.11b,c Earlier, we have shown that
conjugated squaraine oligomers containing podand side chains
have the ability to specifically bind Li+ and K+ with high
sensitivity.12 Recently, in a novel but simple approach, we have
shown selective sensing of calcium and other alkaline earth
metal ions using the principle of metal ion-induced folding of
squaraine tethered podands.13 In this approach, we introduced
the concept of exciton interaction in squaraine “H”-aggregate
as an alternate signaling mechanism for a cation binding process.
The rationale behind the design of such chemosensors is based
on the phenomena of “H” and “J” aggregation of organic dyes
such as cyanines, merocyanines, and squaraines, which show
distinctly different optical properties between aggregates and
monomers.14,15 Using our strategy of exciton coupled signaling
through cation-induced conformational folding, Block and Hecht
Figure 1. A chromogenic chemosensor based on a specific cation-driven,
exciton interaction in a dye-linked podand.
have recently reported the synthesis of a few polysquaraine-
based sensors.16 Our sustained interest in designing a selective
chemosensor for Ca2+, a biologically significant cation, which
is difficult to detect in the presence of other similar ions, leads
to the design of a new chromogenic probe based on a squaraine
foldamer.17 To our surprise, squaraines when tethered to a
podand with five oxygen atoms, in a bichromophoric fashion,
become insensitive to alkali metal ions but show remarkable
selectivity and response toward Ca2+ as shown in Figure 1.
Results and Discussion
(7) (a) Vo¨gtle, F.; Weber, E. Angew. Chem., Int. Ed. Engl. 1979, 18, 753. (b)
Dix, J. P.; Vo¨gtle, F. Chem. Ber. 1980, 113, 457. (c) Lo¨hr, H.-G.; Vo¨gtle,
F. Chem. Ber. 1985, 118, 914. (d) Lo¨hr, H.-G.; Vo¨gtle, F. Acc. Chem. Res.
1985, 18, 65 and references therein. (e) Kakizawa, Y.; Akita, T.; Nakamura,
H. Chem. Lett. 1993, 1671. (f) Suzuki, Y.; Morozumi, T.; Nakamura, H.;
Shimomura, M.; Hazashita, T.; Bartsh, R. A. J. Phys. Chem. B 1998, 102,
7910. (g) Morozumi, T.; Anada, T.; Nakamura, H. J. Phys. Chem. B 2001,
105, 2923. (h) Morozumi, T.; Hiraga, H.; Nakamura, H. Chem. Lett. 2003,
32, 2003.
(8) (a) de Silva, A. P.; Gunaratne, H. Q. N.; McCoy, C. P. J. Am. Chem. Soc.
1997, 119, 7891. (b) de Silva, A. P.; Dixon, I. M.; Gunaratne, H. Q. N.;
Gunnlaugsson, T.; Maxwell, P. R. S.; Rice, T. E. J. Am. Chem. Soc. 1999,
121, 1393. (c) Nishizawa, S.; Watanabe, M.; Uchida, T.; Teramae, N. J.
Chem. Soc., Perkin Trans. 2 1999, 141. (d) He, H.; Mortellaro, M. A.;
Leiner, M. J. P.; Fraatz, R. J.; Tusa, J. K. J. Am. Chem. Soc. 2003, 125,
1468. (e) He, H.; Mortellaro, M. A.; Leiner, M. J. P.; Young, S. T.; Fraatz,
R. J.; Tusa, J. K. Anal. Chem. 2003, 75, 549.
(9) (a) Tsien, R. Y. Am. J. Physiol. 1992, 263, C723. (b) Valeur, B.; Pouget,
J.; Bourson, J.; Kaschke, M.; Ernsting, N. P. J. Phys. Chem. 1992, 96,
6545. (c) Gromov, S. P.; Ushakov, E. N.; Vedernikov, A. I.; Lobova, N.
A.; Alfimov, M. V.; Strelenko, Y. A.; Whitesell, J. K.; Fox, M. A. Org.
Lett. 1999, 1, 1697. (d) Rurack, K.; Rettig, W.; Resch-Genger, U. Chem.
Commun. 2000, 407. (e) Witulski, B.; Weber, M.; Bergstrasser, U.;
Desvergne, J.-P.; Bassani, D. M.; Laurent, H. B. Org. Lett. 2001, 3, 1467.
(10) (a) Fages, F.; Desvergne, J.-P.; Kampke, K.; Bouas-Laurent, H.; Lehn, J.-
M.; Konopelski, J.-P.; Marsau, P.; Barrans, Y. J. Chem. Soc., Chem.
Commun. 1990, 655. (b) Hong, S. Y.; Czarnik, A. W. J. Am. Chem. Soc.
1993, 115, 3330. (c) Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Lehn,
J.-M.; Barrans, Y.; Marsau, P.; Meyer, M.; Albrecht-Gary, A.-M. J. Org.
Chem. 1994, 59, 5264. (d) Sasaki, D. Y.; Shnak, D. R.; Pack, D. W.; Arnold,
F. H. Angew. Chem., Int. Ed. Engl. 1995, 34, 905. (e) Strauss, J.; Daub, J.
Org. Lett. 2002, 4, 683. (f) Sankaran, N. B.; Banthia, S.; Das, A.; Samanta,
A. New J. Chem. 2002, 26, 1529.
(11) (a) Das, S.; Thomas, K. G.; Thomas, K. J.; Kamat, P. V.; George, M. V.
J. Phys. Chem. 1994, 98, 9291. (b) Thomas, K. G.; Thomas, K. J.; Das, S.;
George, M. V. Chem. Commun. 1997, 597. (c) Akkaya, E. U.; Turkyilmaz,
S. Tetrahedron Lett. 1997, 38, 4513. (d) Oguz, U.; Akkaya, E. U.
Tetrahedron Lett. 1997, 38, 4509. (e) Oguz, U.; Akkaya, E. U. Tetrahedron
Lett. 1998, 39, 5857. (f) Kurker, B.; Akkaya, E. U. Tetrahedron Lett. 1999,
40, 9125. (g) Dilek, G.; Akkaya, E. U. Tetrahedron Lett. 2000, 41, 3721.
(12) (a) Chenthamarakshan, C. R.; Ajayaghosh, A. Tetrahedron Lett. 1998, 39,
1795. (b) Chenthamarakshan, C. R.; Eldo, J.; Ajayaghosh, A. Macromol-
ecules 1999, 32, 5846. (c) Ajayaghosh, A. Chem. Soc. ReV. 2003, 32, 181.
(13) (a) Ajayaghosh, A.; Arunkumar, E.; Daub, J. Angew. Chem., Int. Ed. 2002,
41, 1766. (b) Arunkumar, E.; Chithra, P.; Ajayaghosh, A. J. Am. Chem.
Soc. 2004, 126, 6590.
Synthesis and Characterization of the Bichromophores
1a-d and the Monochromophore 2. Synthesis of 1a-d was
achieved as shown in Scheme 1. 3-(4-(N,N-Dimethylamino)-
phenyl)-4-hydroxycyclobut-3-ene-1,2-dione (8) was prepared
according to reported procedures.18 The bisaniline derivatives
5a-d were prepared by the reaction of the aniline derivative 3
with the corresponding ditosylates (4a-d) in 45-55% yields.
Reaction of 8 with 5a-d in 2-propanol/tributyl orthoformate
under refluxing yielded the bichromophores 1a-d in 20-25%
yield. FT-IR spectra of 1a-d showed a strong absorption at
1590 cm-1 characteristic of the resonance stabilized zwitterionic
structure of squaraine dyes. 1H NMR spectra of 1a-d showed
a set of peaks corresponding to the aromatic protons. Four of
the aromatic protons together appeared as two doublets, which
upon merging looked like a triplet at δ 6.8 ppm. The remaining
four aromatic protons appeared as two doublets around δ 8.3
ppm. The 13C NMR spectra, MALDI-TOF mass spectra, HRMS
data, and elemental analysis data of 1a-d were in agreement
with the structures. Similarly, the monochromophore 2 was
characterized using FT-IR, 1H NMR, 13C NMR, and elemental
analyses.
Solvent-Induced Aggregation Behavior of 1a-d and 2. The
bichromophores 1a-d showed a strong absorption maximum
(15) (a) Buncel, E.; McKerrow, A. J.; Kazmaier, P. M. J. Chem. Soc., Chem.
Commun. 1992, 1242. (b) Das, S.; Thanulingam, T. L.; Thomas, K. G.;
Kamat, P. V.; George, M. V. J. Phys. Chem. 1993, 97, 13620. (c) Liang,
K.; Law, K.-Y.; Whitten, D. G. J. Phys. Chem. 1994, 98, 13379. (d) Das,
S.; Thomas, K. G.; Thomas, K. J.; Madhavan, V.; Liu, D.; Kamat, P. V.;
George, M. V. J. Phys. Chem. 1996, 100, 17310.
(16) Block, M. A. B.; Hecht, S. Macromolecules 2004, 37, 4761.
(17) Foldamers are molecules designed to utilize noncovalent interactions to
stabilize a well-defined conformation in solution. Although oligomers or
polymers are generally referred to as foldamers, a dimer can be considered
as a simplest foldamer unit. In the present context, a foldamer is a foldable
bichromophore (dimer) attached to a flexible polyether, which undergoes
a solvent- or cation-induced folding. (a) Gellman, S. H. Acc. Chem. Res.
1998, 31, 173. (b) Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.;
Moore, J. S. Chem. ReV. 2001, 101, 3893. (c) Schmuck, C. Angew. Chem.,
Int. Ed. 2003, 42, 2448. (d) Lokey, R. S.; Iverson, B. L. Nature 1995, 375,
303
(14) (a) Katoh, T.; Inagaki, Y.; Okazaki, R. J. Am. Chem. Soc. 1998, 120, 3623.
(b) Lu, L.; Lachicotte, R. J.; Penner, T. L.; Perlstein, J.; Whitten, D. G. J.
Am. Chem. Soc. 1999, 121, 8146. (c) Ushakov, E. N.; Gromov, S. P.;
Fedorova, O. A.; Pershina, Y. V.; Alfimov, M. V.; Barigelletti, F.; Flamigni,
L.; Balzani, V. J. Phys. Chem. A 1999, 103, 11188. (d) Wu¨rthner, F.; Yao,
S. Angew. Chem., Int. Ed. 2000, 39, 1978. (e) Zeena, S.; Thomas, K. G. J.
Am. Chem. Soc. 2001, 123, 7859. (f) Wu¨rthner, F.; Yao, S.; Debaerde-
maeker, T.; Wortmann, R. J. Am. Chem. Soc. 2002, 124, 9431. (g) Yao,
S.; Beginn, U.; Gress, T.; Lysetska, M.; Wu¨rthner, F. J. Am. Chem. Soc.
2004, 126, 8336.
(18) (a) Robello, D. R. J. Polym. Sci., Part A: Polym. Chem. 1990, 28, 1. (b)
Keil, D.; Hartmann, H. Dyes Pigm. 2001, 49, 161.
9
J. AM. CHEM. SOC. VOL. 127, NO. 9, 2005 3157