10.1002/chem.201605611
Chemistry - A European Journal
COMMUNICATION
Acknowledgements
This work was based on financial support by the National
Science Foundation under CHE-0841611.
Table 4. Hydroamination of 1,1-dimethylallene catalyzed by 1b.a
[1]
[a] L. Huang, M. Arndt, K. Gooßen, H. Heydt, L. J. Gooßen,
Chem. Rev. 2015, 115, 2596-2697; [b] T. E. Mꢀller, K. C. Hultzsch,
M. Yus, F. Foubelo, M. Tada, Chem. Rev. 2008, 108, 3795-3892; [c]
J. Hannedouche, E. Schulz, Chem. Eur. J. 2013, 19, 4972-4985.
[2]
[a] J. F. Beck, D. C. Samblanet, J. A. R. Schmidt, RSC Adv.
2013, 3, 20708-20718; [b] J. F. Beck, J. A. R. Schmidt, RSC Adv.
2012, 2, 128-131; [c] C. F. Bender, R. A. Widenhoefer, J. Am. Chem.
Soc. 2005, 127, 1070-1071; [d] A. Bethegnies, J.-C. Daran, R. Poli,
Organometallics 2013, 32, 673-681; [e] K. L. Butler, M. Tragni, R. A.
Widenhoefer, Angew. Chem. Int. Ed. 2012, 51, 5175-5178; [f] H.
Tafazolian, D. C. Samblanet, J. A. R. Schmidt, Organometallics
2015, 34, 1809-1817; [g] J. C. Timmerman, B. D. Robertson, R. A.
Widenhoefer, Angew. Chem. Int. Ed. 2015, 54, 2251-2254; [h] K. L.
Toups, R. A. Widenhoefer, Chem. Commun. 2010, 46, 1712-1714; [i]
R. A. Widenhoefer, X. Han, Eur. J. Org. Chem. 2006, 4555-4563; [j]
D. Banerjee, K. Junge, M. Beller, Angew. Chem. Int. Ed. 2014, 53,
1630-1635; [k] D. Banerjee, K. Junge, M. Beller, Org. Chem. Front.
2014, 1, 368-372; [l] A. M. Johns, M. Utsunomiya, C. D. Incarvito, J.
F. Hartwig, J. Am. Chem. Soc. 2006, 128, 1828-1839; [m] L.
Ackermann, A. Althammer, Synlett 2006, 3125-3129; [n] B. T.
Jahromi, A. N. Kharat, M. M. Amini, H. Khavasi, Appl. Petrochem.
Res. 2015, 5, 105-112; [o] Y. Kuninobu, Y. Nishina, K. Takai, Org.
Lett. 2006, 8, 2891-2893; [p] T. E. Mueller, K. C. Hultzsch, M. Yus, F.
Foubelo, M. Tada, Chem. Rev. 2008, 108, 3795-3892; [q] G.
Kuchenbeiser, A. R. Shaffer, N. C. Zingales, J. F. Beck, J. A. R.
Schmidt, J. Organomet. Chem. 2011, 696, 179-187.
8a (63%)
8c (80%)
8b (83%)
8d (90%)
8e (68%)
8f (78%)
a Reactions were performed in small vials; toluene (2 ml) was added to
1b (0.05 mmol, 10 mol%), followed by addition of amine (2 mmol, 4 eq.)
and allene (0.5 mmol, 1 eq.).
Mechanistically, the preliminary results reported herein show
that cationic [(3IP)Ni(allyl)]+ complexes behave similarly to their
palladium analogues upon treatment with secondary amines.
That is, coordination of a secondary amine leading to transient
formation of a nickel-amido species constitutes a plausible
activation pathway. Then, reductive elimination of an N-
allylamine followed by oxidative ligation of the iminium proton to
the nickel complex results in the active nickel hydride species,
producing the corresponding first turnover products 2a and 2b
[3]
[a] J. S. Bandar, M. T. Pirnot, S. L. Buchwald, J. Am. Chem.
Soc. 2015, 137, 14812-14818; [b] D. Niu, S. L. Buchwald, J. Am.
Chem. Soc. 2015, 137, 9716-9721; [c] M. T. Pirnot, Y.-M. Wang, S.
L. Buchwald, Angew. Chem. Int. Ed. 2016, 55, 48-57; [d] Y. Xi, T. W.
Butcher, J. Zhang, J. F. Hartwig, Angew. Chem. Int. Ed. 2016, 55,
776-780; [e] J. Bahri, R. Blieck, B. Jamoussi, M. Taillefer, F. Monnier,
Chem. Commun. 2015, 51, 11210-11212; [f] R. Blieck, J. Bahri, M.
Taillefer, F. Monnier, Org. Lett. 2016, 18, 1482-1485; [g] E. Bernoud,
C. Lepori, M. Mellah, E. Schulz, J. Hannedouche, Catal. Sci.
Technol. 2015, 5, 2017-2037.
(Scheme 2). Recently, Mashima proposed
a
similar
intramolecular reductive elimination of amido and allyl units
instead of nucleophilic attack on the allyl unit of a nickel complex
as one of the key steps in the catalytic amination of allylic
alcohols. Utilization of these inner sphere mechanisms, rather
than ligand attack mechanisms, seems to fit well in several
recent reports, as well as the chemistry presented herein.[2f, 16]
[4]
S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509,
299-309.
[5]
[a] L. Fadini, A. Togni, Chem. Commun. 2003, 30-31; [b] L.
Fadini, A. Togni, Helv. Chim. Acta 2007, 90, 411-424; [c] L. Fadini, A.
Togni, Tetrahedron: Asymmetry 2008, 19, 2555-2562.
[6]
[a] A. Castonguay, D. M. Spasyuk, N. Madern, A. L.
Beauchamp, D. Zargarian, Organometallics 2009, 28, 2134-2141; [b]
A. B. Salah, C. Offenstein, D. Zargarian, Organometallics 2011, 30,
5352-5364.
[7]
Trans. 2014, 43, 1762-1768.
[8] L. Ackermann, W. Song, R. Sandmann, J. Organomet. Chem.
2011, 696, 195-201.
A. Reyes-Sanchez, I. Garcia-Ventura, J. J. Garcia, Dalton
Scheme 2. Activation of the nickel precatalyst in the presence of amine.
[9]
J. Pawlas, Y. Nakao, M. Kawatsura, J. F. Hartwig, J. Am.
In summary, we have described the synthesis of novel cationic
[(3IP)Ni(allyl)]+ complexes and their reactivity in the
hydroamination of allenes with secondary amines, constituting
the first example of nickel-catalyzed hydroamination of
unactivated substrates. The resulting allylamines were isolated
in good yields and characterized by NMR spectroscopy and
mass spectrometry. These results revealed good efficiency and
selectivity with these new nickel complexes, although we expect
that higher reactivity can be achieved by further tuning the ligand
system. Further study of the mechanism and continued
expansion of the hydroamination substrate scope utilizing these
novel nickel catalysts is ongoing.
Chem. Soc. 2002, 124, 3669-3679.
[10] [a] R. S. Manan, P. Kilaru, P. Zhao, J. Am. Chem. Soc. 2015,
137, 6136-6139; [b] M. Henrion, V. Ritleng, M. J. Chetcuti, ACS
Catal. 2015, 5, 1283-1302; [c] R. A. Green, J. F. Hartwig, Angew.
Chem. Int. Ed. 2015, 54, 3768-3772; [d] N. F. F. Nathel, J. Kim, L.
Hie, X. Jiang, N. K. Garg, ACS Catal. 2014, 4, 3289-3293.
[11] N. C. Zingales, A. R. Shaffer, J. A. R. Schmidt,
Organometallics 2013, 32, 578-586.
[12] D. C. Billington, Chem. Soc. Rev. 1985, 14, 93-120.
[13] [a] S. Saito, K. Hirayama, C. Kabuto, Y. Yamamoto, J. Am.
Chem. Soc. 2000, 122, 10776-10780; [b] M. Taguchi, I. Tomita, T.
Endo, Angew. Chem. Int. Ed. 2000, 39, 3667-3669.
[14] T. Kippo, T. Fukuyama, I. Ryu, Org. Lett. 2011, 13, 3864-3867.
[15] [a] M. Johannsen, K. A. Jorgensen, Chem. Rev. 1998, 98,
1689-1708; [b] M. S. Baird, A. V. Nizovtsev, I. G. Bolesov,
Tetrahedron 2002, 58, 1581-1593.
[16] [a] Y. Kita, H. Sakaguchi, Y. Hoshimoto, D. Nakauchi, Y.
Nakahara, J.-F. Carpentier, S. Ogoshi, K. Mashima, Chem. Eur. J.
2015, 21, 14571-14578; [b] D.-C. Bai, F.-L. Yu, W.-Y. Wang, D.
Chen, H. Li, Q.-R. Liu, C.-H. Ding, B. Chen, X.-L. Hou, Nat. Commun.
2016, 7, 11806.
Synthetic procedures and characterization data for nickel
complexes and hydroamination products are available in the
supporting information file. CCDC 1516985 contains the
supplementary crystallographic data for this paper. These data
are provided free of charge by The Cambridge Crystallographic
Data Centre.
This article is protected by copyright. All rights reserved.