7
232 Journal of Medicinal Chemistry, 2005, Vol. 48, No. 23
Mu n˜ oz-Ruiz et al.
quently, a 6 ns MD simulation was carried out. Only one of
the two simulations provided a stable trajectory, as noted in
a small positional root-mean-square deviation (around 0.7 Å
for the backbone atoms in the mobile region with regard to
the crystallographic structure) and favorable contacts with the
enzyme (see text). The characterization of the structural
features that mediate the binding of compound 5 to the enzyme
was determined by averaging the geometrical parameters for
the snapshots (saved every picosecond) sampled along the last
(22) Pang, Y. P.; Kollmeyer, T. M.; Hong, F.; Lee, J. C.; Hammond,
P. I.; Haugabouk, S. P.; Brimijoin, S. Rational design of alkylene-
linked bis-pyridiniumaldoximes as improved acetylcholin-
esterase reactivators. Chem. Biol. 2003, 10, 491-502.
23) Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Belluti, F.; Cavalli, A.;
Bartolini, M.; Andrisano, V.; Valenti, P.; Recanatini, M. 3-(4-
[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-
(
2
-chromenone (AP2238) inhibits both acetylcholinesterase and
acetylcholinesterase-induced â-amyloid aggregation: a dual
function lead for Alzheimer’s disease therapy. J. Med. Chem.
2
003, 46, 2279-2282.
2
ns of the MD simulation.
(24) Dorronsoro, I.; Castro, A.; Mart ı´ nez, A. Peripheral and dual-
binding site acetylcholinesterase inhibitors as neurodegenerative
disease modifying agents. Expert Opin. Ther. Pat. 2003, 13,
Supporting Information Available: Elemental analysis
1
725-173.
1
13
data for 3-23 and 27-29 and H and C NMR data for 3-23
and 26-29. This material is available free of charge via the
Internet at http://pubs.acs.org.
(
(
(
(
(
25) Mart ´ı nez, A.; Fern a´ ndez, E.; Castro, A.; Conde, S.; Rodr ´ı guez-
Franco, M. I.; Ba n˜ os, J. E.; Bad ´ı a, A. N-Benzylpiperidine
derivatives of 1,2,4-thiadiazolidinone as new acetylcholinesterase
inhibitors. Eur. J. Med. Chem. 2000, 35, 913-919.
26) Castro, A.; Hern a´ ndez, L.; Dorronsoro, I.; S a´ enz, P.; P e´ rez, C.;
Kalko, S.; Orozco, M.; Luque, F. J.; Mart ´ı nez, A. Synthesis,
biological evaluation and modelling studies of dual binding
AChE inhibitors. Med. Chem. Res. 2002, 11, 219-237.
27) Dorronsoro, I.; Alonso, D.; Castro, A.; Garc ´ı a-Palomero, E.; del
Monte, M.; Mart ´ı nez, A. Synthesis and biological evaluation of
tacrine-thiadiazolidinone hybrids as dual acetylcholinesterase
inhibitors. Arch. Pharm. Pharm. Res 2005, 338, 18-23.
References
(
1) Walsh, D. M.; Selkoe D. J. Deciphering the molecular basis of
memory failure in Alzheimer’s disease. Neuron 2004, 44, 181-
193.
(
2) Selkoe, D. J. Alzheimer’s disease: genes, proteins and therapy.
Physiol. Rev. 2001, 81, 741-766.
3) Dekoski, S. T. Pathology and pathways of Alzheimer’s disease
with an update on new development and treatment. J. Am.
Geriatr. Soc. 2003, 51, 314-320.
(
28) Mart ´ı nez, A.; Dorronsoro, I.; Rubio, L.; Alonso, D.; Fuertes, A.;
Morales-Alcelay, S.; Del Monte, M.; Garc ´ı a-Palomero, E.; Us a´ n,
P.; De Austria, C.; Medina, M.; Mu n˜ oz, P. Tacrine derivatives
as inhibitors of acetylcholinestererase. WO 2005/005413, 2005.
29) Savini, L.; Gaeta, A.; Fattorusso, C.; Catalanotti, B.; Campiani,
G.; Chiasserini, L.; Pellerano, C.; Novellino, E.; McKissic, D.;
Saxena, A. Specific target of acetylcholinesterase and butyryl-
cholinesterase recognition sites. Rational design of novel, selec-
tive, and highly potent cholinesterase inhibitors. J. Med. Chem.
(
4) Tariot P. N.; Federoff, H. J. Current treatment for Alzheimer’s
disease and future prospects. Alzheimer Dis. Assoc. Disord. 2003,
17, 105-113.
(
(
(
5) Kurz, A. The therapeutical potential of tacrine. J. Neural.
Transm., Suppl. 1998, 54, 295-299.
6) Sugimoto, H. Donepezil hydrochloride: A treatment drug for
Alzheimer’s disease. Chem. Rec. 2001, 1, 63-73.
7) Jann, M. W. Rivastigmine, a new-generation cholinesterase
inhibitor for the treatment of Alzheimer’s disease. Pharmaco-
therapy 2000, 20, 1-12.
2
003, 46 (1), 1-4.
(
(
(
30) Carlier, P. R.; Chow, E. S. H.; Han, Y.; Liu, J.; El Yazla, J.; Pang,
Y. P. Heterodimeric tacrine-based acetylcholinesterase inhibi-
tors: investigating ligand-peripheral site interactiones. J. Med.
Chem. 1999, 42, 4225-4231.
(
8) Zarotsky, V.; Sramek, J. J.; Cutler, N. R. Galantamine hydro-
bromide: an agent for Alzheimer’s disease. Am. J. Health-Syst.
Pharm. 2003, 60, 446-452.
9) Soreq, H.; Seidman, S. Acetylcholinesterase: new roles for an
old actor. Nat. Rev. Neurosci. 2001, 2, 8-17.
31) Rosini, M.; Andrisano, V.; Bartolini, M.; Bolognesi, M.; Hrelia,
P.; Minarini, A.; Tarozzi, A.; Melchiorre, C. Rational Approach
To Discover Multipotent Anti-Alzheimer Drugs. J. Med. Chem.
(
2005, 48 (2), 360-363.
(
10) Johnson, G.; Moore, S. W. The adhesion function on acetyl-
cholinesterase is located at the peripheral anionic site. Biochem.
Biophys. Res. Commun. 1999, 258, 758-762.
11) Giacobini, E. Cholinesterases: New roles in brain function and
in Alzheimer’s disease. Neurochem. Res. 2003, 28, 515-522.
12) Mu n˜ oz, F. J.; Aldunate, R.; Inestrosa, N. C. Peripheral binding
site is involved in the neurotrophic activity of acetylcholin-
esterase. NeuroReport 1999, 26, 3621-3625.
13) Sharma, K. V.; Koenigsberger, C.; Brimijoin, S.; Gigbee, J. W.
Direct evidence for an adhesive function in the noncholinergic
role of acetylcholinesterase in neurite outgrowth. J Neurosci.
Res. 2001, 63, 165-175.
32) Recanatini, M.; Cavalli, A.; Belluti, F.; Piazzi, L.; Rampa, A.;
Bisi, A.; Gobbi, S.; Valenti, P.; Andrisano, V.; Bartolini, M.;
Cavrini, V. SAR of 9-amino-1,2,3,4-tetrahydroacrydine-based
acetylcholinesterase inhibitors synthesis, enzyme inhibitory
activity, QSAR and structure-based COMFA of tacrine ana-
logues. J. Med. Chem. 2000, 43, 2007-2018.
(
(
(
33) Sippl, W.; Holtje, H. D. Structure-based 3D-QSARsmerging the
accuracy of structure-based alignments with the computational
efficiency of ligand-based methods. J. Mol. Struct.: THEOCHEM
(
2000, 503, 31-50.
(
34) Morzyc-Ociepa, B.; Michaska, D.; Petraszco, A. Structures and
vibrational structures of indole carboxylic acids. Part I. Indole-
(
14) Blasina, M. F.; Faria, A. C.; Gardino, P. F.; Hokoc, J. N.; Almeida,
O. M.; de Mello, F. G.; Arruti, C.; Dajas, F. Evidence of
noncholinergic function of acetylcholinesterase during develop-
ment of chicken retina as shown by fasciculin. Cell Tissue Res.
2
-carboxylic acid. J. Mol. Struct. 2004, 688, 79-86.
(
(
35) Ming-Kuan, H. U.; Jiajiu, S. Tacrine derivatives for treating
Alzheimer’s disease. WO01/17529, 2001.
36) Padwa, A.; Harring, S. R.; Hertzog, D. L.; Nadlet, W. R.
Cycloaddition chemistry of anhydro-4-hydroxy-1,3-thiazolium
hydroxides for the synthesis of heterocycles. Synthesis 1994, 9,
2
000, 299, 173-184.
(
15) Inestrosa, N. C.; Alarc o´ n, R. Molecular interactions of acetyl-
cholinesterase with senile plaques. J. Physiol. (Paris) 1998, 92,
9
93-1004.
37) Agarwal, A.; Jalluri, R. K.; DeWitt Blanton, C.; Will Taylor, E.
A new synthesis of the potent 5-HT receptor ligand, 5-carboxy-
amidotryptamine Synth. Commun. 1993, 23 (8), 1101-1110.
341-344.
(
(
16) Inestrosa, N. C.; Alvarez, A.; Calderon, F. Acetylcholinesterase
is a senile plaque component that promotes assembly of amyloid
beta-peptide into Alzheimer’s filaments. Mol. Psychiatry 1996,
1
(38) Dressman, B. A.; Spangle, L. A.; Kaldor, S. W. Solid phase
synthesis of hydantoins using a carbamate linker and a novel
cyclization/cleavage step. Tetrahedron Lett. 1996, 7, 937-940.
(39) Ellman, G. L.; Courtney, K. D.; Andres, B.; Featherstone, R. M.
A new and rapid colorimetric determination of acetylcholin-
esterase activity. Biochem. Pharmacol. 1961, 7, 88-95.
(40) Barril, X.; Kalko, S. G.; Orozco, M.; Luque, F. J. Rational design
of reversible acetylcholinesterase inhibitors. Mini-Rev. Med.
Chem. 2002, 2, 27-36.
(41) Camps, P.; El Achab, R.; Morral, J.; Mu n˜ oz-Torrero, D.; Badia,
A.; Ba n˜ os, J. E.; Vivas, N. M.; Barril, X.; Orozco, M.; Luque, F.
J. New tacrine-huperzine A hybrids (huprines): highly potent
tight-binding acetylcholinesterase inhibitors of interest for the
treatment of Alzheimer’s disease. J. Med. Chem. 2000, 43, 4657-
4666.
(42) Dvir, H.; Wong, D. M.; Harel, M.; Barril, X.; Orozco, M.; Luque,
F. J.; Mu n˜ oz-Torrero, D.; Camps, P.; Rosenberry, T. L.; Silman,
I.; Sussman, J. L. 3D structure of Torpedo californica acetyl-
cholinesterase complexed with huprine X at 2.1 Å resolution:
Kinetic and molecular dynamics correlates. Biochemistry 2002,
41, 2970-2981.
1, 359-361.
(
17) De Ferrari, G. V.; Canales, M. A.; Shin, I.; Weiner, L. M.; Silman,
I.; Inestrosa, N. C. A structural motif of acetylcholinesterase that
promotes amyloid â-peptide fibril formation. Biochemistry 2001,
40, 10447-10457.
(
18) Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. â-Amyloid
aggregation induced by human acetylcholinesterase: inhibition
studies. Biochem. Pharmacol. 2003, 65, 407-416.
(
19) Pang, Y. P.; Quiram, P.; Jelacic, T.; Hong, F.; Brimijoin, S. Highly
potent, selective, and low cost bis-tetrahydroaminoacrine inhibi-
tors of acetylcholinesterase. J. Biol. Chem. 1996, 271, 23646-
23649.
(
20) Castro, A.; Mart ´ı nez, A. Peripheral and dual binding site
acetylcholinesterase inhibitors: Implications in the treatment
of Alzheimer’s disease. Mini-Rev. Med. Chem. 2001, 1, 267-272.
21) Tumiatti, V.; Andrisano, V.; Banzi, R.; Bartolini, M.; Rosini, M.;
Melchiorre, C. Structure activity relationships of acetylcholinest-
erase non-covalent inhibitors based on a polyamine backbone.
(
3
. Effect of replacing the inner polymethylene chain with cyclic
moieties. J. Med. Chem. 2004, 47, 6490-6498.