RSC Advances
Paper
relaxometric characterization was determined by measuring the
bulk magnetic-susceptibility shis of the tBuOH signal.
7 (a) M. R. Longmire, M. Ogawa, P. L. Choyke and
H. Kobayashi, Wiley Interdiscip. Rev.: Nanomed.
Nanobiotechnol., 2014, 6, 155; (b) A. Bumb, M. W. Brechbiel
and P. Choyke, Acta Radiol., 2010, 51, 751.
17O-NMR measurements
8 P. Caravan, Acc. Chem. Res., 2009, 42, 851.
Variable temperature 17O-NMR measurements were recorded at
2.1 T on a JEOL90 spectrometer, equipped with a 5 mm probe, by
using a D2O external lock. The experimental settings were:
spectral width 9000 Hz, 90ꢁ pulse (12 ms), acquisition time 10 ms,
1024 scans and without sample spinning. Aqueous solutions
containing 2.6% of 17O isotope (Yeda, Israel) were used. The
observed transverse relaxation rates (RO2obs) were calculated from
the signal width at half-height (Dn1/2): RO2obs ¼ pDn1/2. Para-
magnetic contributions to the observed transversal relaxation
rate (R2p) were calculated by subtracting from RO2obs the diamag-
netic contribution measured at each temperature value on pure
water enriched with 2.6% 17O isotope.
9 J. Martinelli, M. Fekete, L. Tei and M. Botta, Chem. Commun.,
2011, 47, 3144.
10 (a) W. J. M. Mulder, G. J. Strijkers, G. A. F. Van Tilborg,
D. P. Cormode, Z. A. Fayad and K. Nicolay, Acc. Chem. Res.,
2009, 42, 904; (b) E. Terreno, D. Delli Castelli, C. Cabella,
`
W. Dastru, A. Sanino, J. Stancanello, L. Tei and S. Aime,
Chem. Biodiversity, 2008, 5, 1901.
11 (a) Y. Song, E. K. Kohlmeir and T. J. Meade, J. Am. Chem. Soc.,
2008, 130, 6662; (b) J. B. Livramento, E. Toth, A. Sour,
A. Borel, A. E. Merbach and R. Ruloff, Angew. Chem., Int.
Ed. Engl., 2005, 44, 1480.
12 (a) D. A. Fulton, E. Elemento, S. Aime, L. Chaabane, M. Botta
and D. Parker, Chem. Commun., 2006, 1064; (b) D. A. Fulton,
M. O'Halloran, D. Parker, K. Senanayake, M. Botta and
S. Aime, Chem. Commun., 2005, 474.
Conclusions
The synthesis of three novel DTPA derivatives bearing poly-
hydroxylated pendant arms is reported. While the two DTPA
bisamides L1 and L2 with differently branched polygluconyl
groups were easily synthesised from DTPA bis-anhydride, the
monophosphonic P-DTPA ligand L3 was prepared by a multi-
13 (a) L. Van Der Elst, Y. Raynal, M. Port, P. Tisnes and
R. N. Muller, Eur. J. Inorg. Chem., 2005, 6, 1142; (b) M. Port,
´
C. Corot, O. Rousseaux, I. Raynal, L. Devoldere, J. M. Idee
and A. Dencausse, Magn. Reson. Mater. Phys., Biol. Med.,
2001, 12, 121; (c) M. Port, D. Meyer, B. Bonnemain,
C. Corot, M. Schaefer, O. Rousseaux, C. Simonot,
P. Bourrinet, S. Benderbous, A. Dencausse and
L. Devoldere, Magn. Reson. Mater. Phys., Biol. Med., 1999, 8,
172.
step procedure which included the synthesis of
a bis-
functionalized DTPA bifunctional ligand via the Rapoport
reaction. The relaxivity of GdL1 and GdL2 were very low because
DTPA-bisamides are characterized by slow water exchange rates
of the coordinated water molecule. On the other hand, the
relaxivity values measured for GdL3 over a wide range of
imaging elds (0.5–3 Tesla) are among the highest till now
reported for monomeric Gd(III) complexes with medium sized
molecular weight (ꢄ2000 Da). This nding makes GdL3 a very
promising system for applications at the currently used
magnetic elds of the clinical MRI scanners.
14 J. Kotek, P. Lebduskova, P. Hermann, L. Vander Elst,
R. N. Muller, C. F. G. C. Geraldes, T. Maschmeyer, I. Lukes
and J. A. Peters, Chem.–Eur. J., 2003, 9, 5899.
15 M. Botta, Eur. J. Inorg. Chem., 2000, 399.
16 (a) P. Baia, J. P. Andre, C. F. G. C. Geraldes, J. A. Martins,
A. E. Merbach and E. Toth, Eur. J. Inorg. Chem., 2005, 2110;
(b) J. P. Andre, C. F. G. C. Geraldes, J. A. Martins,
A. E. Merbach, M. I. M. Prata, A. C. Santos, J. J. P. de Lima
and E. Toth, Chem.–Eur. J., 2004, 10, 5804; (c) K. Luo,
G. Liu, X. Zhang, W. She, B. He, Y. Nie, L. Li, Y. Wu,
Z. Zhang, Q. Gong, F. Gao, B. Song, H. Ai and Z. Gu,
Macromol. Biosci., 2009, 9, 1227.
Notes and references
1 The Chemistry of Contrast Agents in Medical Magnetic
´
´
Resonance Imaging, ed. A. Merbach, L. Helm and E. Toth,
John Wiley & Sons Ltd, Chichester, 2nd edn, 2013.
17 V. C. Pierre, M. Botta and K. N. Raymond, J. Am. Chem. Soc.,
2005, 127, 504.
2 (a) C. F. G. C. Geraldes and S. Laurent, Contrast Media Mol.
´ˇ
Imaging, 2009, 4, 1; (b) P. Hermann, J. Kotek, V. Kubıcek 18 (a) G. Yu, M. Yamashita, K. Aoshima, M. Takahashi,
ˇ
and I. Lukes, Dalton Trans., 2008, 3027; (c) P. Caravan,
T. Oshikawa, H. Takayanagi, S. Laurent, C. Burtea,
L. Vander Elst and R. N. Muller, Bioorg. Med. Chem. Lett.,
2007, 17, 2246; (b) M. Takahashi, Y. Hara, K. Aoshima,
H. Kurihara, T. Oshikawa and M. Yamashita, Tetrahedron
Lett., 2000, 41, 8485.
J. J. Ellison, T. J. McMurry and R. B. Lauffer, Chem. Rev.,
1999, 99, 2293.
3 (a) Y. Lvovsky, E. W. Stautner and T. Zhang, Supercond. Sci.
Technol., 2013, 26, 1; (b) T. C. Cosmus and M. Parizh, IEEE
Trans. Appl. Supercond., 2011, 21, 2104.
19 L. Lattuada, A. Barge, G. Cravotto, G. B. Giovenzana and
L. Tei, Chem. Soc. Rev., 2011, 40, 3019.
4 (a) P. R. Luijten and D. W. J. Klomp, Drug Discovery Today:
¨
Technol., 2011, 8, e103; (b) C. K. Khul, F. Traber and 20 J. F. W. Keana and J. S. Mann, J. Org. Chem., 1990, 55, 2868.
H. H. Schild, Radiology, 2008, 246, 675.
21 (a) C. F. G. C. Geraldes, A. M. Urbano, M. C. Alpoim,
A. D. Sherry, K.-T. Kuan, R. Rajagopalan, F. Maton and
R. N. Muller, Magn. Reson. Imaging, 1995, 13, 401; (b)
W. C. Eckelman, S. M. Karesh and R. C. Reba, J. Pharm.
Sci., 1975, 64, 704.
5 (a) L. Helm, Future Med. Chem., 2010, 2, 385; (b) P. Caravan,
C. T. Farrara, L. Frullano and U. Ritika, Contrast Media Mol.
Imaging, 2009, 4, 89.
6 M. Botta and L. Tei, Eur. J. Inorg. Chem., 2012, 1945.
74742 | RSC Adv., 2015, 5, 74734–74743
This journal is © The Royal Society of Chemistry 2015