10.1002/anie.201811459
Angewandte Chemie International Edition
COMMUNICATION
solely incubated with rotenone. This could also be clearly Conflict of interest
observed via the signal ratio of green to red channel (Figure 5b).
The authors declare no conflict of interest
.
Accordingly, MNQI could detect the apoptosis process induced by
rotenone, via the change of localization and emission color. The
effect of VC to relieve rotenone toxicity could also be visualized.
Keywords: fluorescent probe • cell viability • mitochondria •
nucleus • dual-color
Reference
[1]
O. Kepp, L. Galluzzi, M. Lipinski, J. Yuan, G. Kroemer, Nat. Rev. Drug
Discov. 2011, 10, 221-237.
[2]
[3]
V. Vichai, K. Kirtikara, Nat. Protoc. 2006, 1, 1112-1116.
V. M. Steffes, M. M. Murali, Y. Park, B. J. Fletcher, K. K. Ewert, C. R.
Safinya, Biomaterials 2017, 145, 242-255.
[4]
R. Alford, H. M. Simpson, J. Duberman, G. C. Hill, M. Ogawa, C. Regino,
H. Kobayashi, P. L. Choyke, Mol. Imaging 2009, 8, 341-354.
N. Lewinski, V. Colvin, R. Drezek, Small 2008, 4, 26-49.
F. Valeriote, P. L. Van, Cancer Res. 1975, 35, 2619.
S. Elmore, Toxicol. Pathol. 2007, 35, 495-516.
[5]
[6]
[7]
[8]
E. A. Prokhorova, A. V. Zamaraev, G. S. Kopeina, B. Zhivotovsky, I. N.
Lavrik, Cell. Mol. Life Sci. 2015, 72, 4593-4612.
Figure 4. (a) DIC and fluorescent images of HeLa cells stained with 4 μM MNQI
for 60 min after the incubation with different regents, and (b) the corresponding
intensity ratio of green channel to DR channel. Control group: HeLa cells were
treated with DMSO for 24 h; “Rot” group: HeLa cells were incubated with 5 μM
rotenone for 24 h; “Rot+VC” group: HeLa cells were treated with 5 μM rotenone
for 6 h, then 100 μM VC was added, and the cells were incubated for another
18 h. λex = 488 nm; green channel: λem = 500-550 nm; DR channel: λem = 663-
738 nm. Bar = 10 μm.
[9]
S. W. Tait, D. R. Green, Nat. Rev. Mol. Cell Biol. 2010, 11, 621-632.
[10] N. Zamzami, G. Kroemer, Nat. Rev. Mol. Cell Biol. 2001, 2, 67-71.
[11] G. Repetto, A. del Peso, J. L. Zurita, Nat. Protoc. 2008, 3, 1125-1131.
[12] M. L. Joiner, O. M. Koval, J. Li, B. J. He, C. Allamargot, Z. Gao, E. D.
Luczak, D. D. Hall, B. D. Fink, B. Chen, J. Yang, S. A. Moore, T. D.
Scholz, S. Strack, P. J. Mohler, W. I. Sivitz, L. S. Song, M. E. Anderson,
Nature 2012, 491, 269-273.
[13] T. D. Allen, S. A. Rutherford, S. Murray, F. Gardiner, E. Kiseleva, M. W.
Goldberg, S. P. Drummond, Nat. Protoc. 2007, 2, 1180-1184.
[14] B. Glancy, L. M. Hartnell, D. Malide, Z. X. Yu, C. A. Combs, P. S.
Connelly, S. Subramaniam, R. S. Balaban, Nature 2015, 523, 617-620.
[15] H. Tominaga, M. Ishiyama, F. Ohseto, K. Sasamoto, T. Hamamoto, K.
Suzuki, M. Watanabe, Anal. Commun. 1999, 36, 47-50.
In conclusion, we have designed and synthesized an
aggregation/monomer-based fluorescent probe, MNQI, capable
of reversible migration between nucleus and mitochondria, and
visualization of dynamic changes in cell viability in a dual-color
mode. The cationic probe could stain mitochondria in healthy cells,
and form aggregates with DR-emissive properties. Along with the
decrease of cell viability, the novel probe could be released from
mitochondria and migrate into nucleus to emit green fluorescence
in monomer status. Meanwhile, with the recovery of the cell
viability, MNQI can reversibly move back to the mitochondria with
DR emission. Using this unique probe, the cell viability could be
dynamically and accurately visualized through the intracellular
localization and emission color. Particularly, the reversible
changes of cell viability have been successfully observed with the
probe. The cell apoptosis caused by toxic rotenone has been
detected using MNQI, and the inhibition effect of VC to rotenone
caused apoptosis was verified. We believe that MNQI can serve
as a powerful tool to investigate the internal relationship among
apoptosis, nucleus, and mitochondria, and promote the
fundamental researches in biology, pathology, and medicine.
[16] L. Yuan, W. Lin, K. Zheng, S. Zhu, Acc. Chem. Res. 2012, 46, 1462-
1473.
[17] R. Wayne, Chapter 11 - Fluorescence Microscopy, Elsevier Inc., 2014.
[18] M. H. Lee, N. Park, C. Yi, J. H. Han, J. H. Hong, K. P. Kim, D. H. Kang,
J. L. Sessler, C. Kang, J. S. Kim, J. Am. Chem. Soc. 2014, 136, 14136-
14142.
[19] B. Dumat, G. Bordeau, E. Faurel-Paul, F. Mahuteau-Betzer, N. Saettel,
G. Metge, C. Fiorini-Debuisschert, F. Charra, M. P. Teulade-Fichou, J.
Am. Chem. Soc. 2013, 135, 12697-12706.
[20] I. Martinic, S. V. Eliseeva, T. N. Nguyen, V. L. Pecoraro, S. Petoud, J.
Am. Chem. Soc. 2017, 139, 8388-8391.
[21] H. Moritomo, K. Yamada, Y. Kojima, Y. Suzuki, S. Tani, H. Kinoshita, A.
Sasaki, S. Mikuni, M. Kinjo, J. Kawamata, Cell Struct. Funct. 2014, 39,
125-133.
[22] X. Li, M. Tian, G. Zhang, R. Zhang, R. Feng, L. Guo, X. Yu, N. Zhao, X.
He, Anal. Chem. 2017, 89, 3335-3344.
[23] D. Liu, M. Zhang, W. Du, L. Hu, F. Li, X. Tian, A. Wang, Q. Zhang, Z.
Zhang, J. Wu, Y. Tian, Inorg. Chem. 2018, 57, 7676-7683.
[24] N. J. Hestand, F. C. Spano, Chem. Rev. 2018, 118, 7069-7163.
[25] R. S. Harapanhalli, L. W. McLaughlin, R. W. Howell, D. V. Rao, S. J.
Adelstein, A. I. Kassis, J. Med. Chem. 1996, 39, 4804-4809.
[26] G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew, D. S.
Goodsell, A. J. Olson, J. Comput. Chem. 2009, 30, 2785-2791.
[27] M. Das, S. B. Mukherjee, C. Shaha, J. Cell Sci. 2001, 114, 2461-2469.
[28] N. Li, K. Ragheb, G. Lawler, J. Sturgis, B. Rajwa, J. A. Melendez, J. P.
Robinson, J. Biol. Chem. 2003, 278, 8516-8525.
Acknowledgements
This work was financially supported by NSFC (21472067,
21672083, 21877048, 21804052), Taishan Scholar Foundation
(TS201511041), NSF of Shandong Province (ZR2018BB058),
and the startup fund of University of Jinan (309-10004,
160100331).
This article is protected by copyright. All rights reserved.