The Journal of Organic Chemistry
Article
obtained was dissolved in water (2 mL). Then, the aqueous phase was
extracted with ethyl acetate (5 × 5 mL). The organic layers were
combined and dried over Na2SO4, and the solvent was removed under
reduced pressure. Afterward, the residue was kept under high vacuum
for 3 h to furnish aza-MBH adduct 10c, as an orange viscous oil in
AUTHOR INFORMATION
Corresponding Authors
Notes
■
1
55% yield (158 mg, 0.28 mmol). H NMR (250 MHz, CD3OD) δ
2.34 (quint, J = 6.5 Hz, 3H); 2.52 (s, 3H); 3.85 (s, 3H); 4.06 (s, 3H);
4.32 (m, J = 7.1 Hz, 4H); 5.49 (s, 1H); 5.91 (s, 1H); 6.40 (s, 1H);
6.85 (d, J = 8.8 Hz, 2H); 7.06 (d, J = 8.6 Hz, 2H); 7.37 (d, J = 8.0 Hz,
2H); 7.71 (m, J = 7.8 Hz, 4H); 9.03 (s, 1H). 13C NMR (62.5 MHz,
CD3OD), δ 20.0; 28.7; 35.2; 54.4; 57.0; 61.1; 113.4; 122.2; 123.6;
126.1; 126.7; 128.4; 128.9; 129.0; 129.5; 130.3; 138.1; 140.9; 143.1;
159.2; 165.6. HRMS (ESI, m/z) calculated for C25H30N3O5S+
484.1901; found: 484.1893.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
The authors are grateful to Fundaca
■
̧
o de Amparo a
̃
̀
Pesquisa do
Estado de Sao Paulo (Fapesp) for research fund (Nos. 2013/
̃
10449-5 and 2012/10701-3) and CNPq for research fellow-
ships (F.C. and M.N.E.).
Ethyl 2-[(4-Methoxyphenyl)(4-methylbenzenesulfonamido)-
methyl]prop-2-enoate (10d, entry 4). In a round-bottom flask of
10 mL containing a magnetic stirrer were mixed ethyl acrylate (54 μL,
0.5 mmol, 1 equiv), N-(4-methoxybenzylidene)-4-methyl-benzene-
sulfonamide (0.289 g, 1 mmol, 2 equiv), and DABCO (0.034 g, 0.6
mmol, 0.6 equiv) in acetonitrile (500 μL). The reaction was stirred for
30 h at room temperature, and its evolution was followed by thin layer
chromatography (TLC). After completion, the solvent was removed
under reduced pressure and the residue was purified on silica gel by
flash column chromatography (SiO2, gradient: Hex; 9/1 Hex/AcOEt;
8/2 Hex/AcOEt) to furnish the aza-MBH adduct 10d, as a pale yellow
REFERENCES
■
(1) Banerjee, S.; Mazumdar, S. Int. J. Anal. Chem. 2012, 2012, 1−40
(Article ID 282574).10.1155/2012/282574
(2) (a) Schroder, D. Acc. Chem. Res. 2012, 45, 1521−1532.
(b) O’Hair, R. A. J. Int. J. Mass Spectrom. 2015, 377, 121−129.
(c) Chen, P. Angew. Chem., Int. Ed. 2003, 42, 2832−2847.
(3) Girod, M.; Moyano, E.; Campbell, D. I.; Cooks, R. G. Chem. Sci.
2011, 2, 501−510.
(4) Lee, J. K.; Banerjee, S.; Nam, H. G.; Zare, R. N. Q. Rev. Biophys.
2015, 48, 437−444.
1
viscous oil, in 74% yield (144 mg, 0.37 mmol). H NMR (250 MHz,
(5) Vikse, K. L.; Ahmadi, Z.; McIndoe, J. S. Coord. Chem. Rev. 2014,
279, 96−114.
CD3OD) δ 1.15 (t, J = 7.1 Hz, 3H); 2.4 (s, 3H); 3.74 (s, 3H); 4.05 (q,
J = 7.1 Hz, 2H); 5.25 (d, J = 8.5 Hz, 1H); 5.60 (d, J = 8.6 Hz, 1H); 5.8
(s, 1H); 6.20 (s, 1H); 6.74 (d, J = 8.8 Hz, 2H); 7.04 (d, J = 8.0 Hz,
2H); 7.22 (d, J = 8.0 Hz, 2H); 7.66 (d, J = 8.3 Hz, 2H). 13C NMR
(62.5 MHz, CD3OD) δ 13.9; 21.47; 55.2; 58.5; 60.9; 113.8; 127.2;
127.7; 129.4; 130.8; 137.6; 138.9; 143.3; 159.1; 165.4. HRMS (ESI,
m/z) calculated for C20H23NNaO5S+ 412.1189; found: 412.1191.
General Procedure for Reactions Monitoring. All reactions
monitored by ESI(+)-MS were prepared in a round-bottom flask of 10
mL with a magnetic stirrer containing 0.6 equiv of catalyst (DABCO),
1 equiv of alkene activated (acrylate tagged or ethyl acrylate), 2 equiv
of electrophile (aldehyde or N-tosyl imine), and 500 μL of acetonitrile
as the reaction solvent at ambient temperature. Aliquots from the
reaction medium (1 μL) were continuously taken and diluted in 1 mL
of acetonitrile (ACN). The sample solutions were prepared in
polypropylene microtubes (Eppendorf) and directly injected into the
ESI(+)-FT-ICR-MS.
Mass Spectrometry Data. For this exploratory mechanistic study,
ultrahigh resolution MS data were performed using a 7.2T LTQ-FT
Ultra mass spectrometer equipped with a direct infusion electrospray
ionization source operating in the positive mode ESI(+)-MS under the
following conditions: Spray Voltage, 3.5 kV; Capillary Potential, 40 V;
Tube lens potential, 100 V; Capillary Temperature, 280 °C, and a
Flow rate of 10 μL/min. Data were recorded in full MS mode in
ESI(+) using a range of m/z 100 to 1000. The average resolving power
(6) Vaz, B. V.; Milagre, C. D. F.; Eberlin, M. N.; Milagre, H. M. S.
Org. Biomol. Chem. 2013, 11, 6695−6698.
(7) O’Hair, R. A. J.; Rijs, N. J. Acc. Chem. Res. 2015, 48, 329−340.
̀
(8) Parera, M.; Dachs, A.; Sola, M.; Pla-Quintana, A.; Roglans, A.
Chem. - Eur. J. 2012, 18, 13097−13107.
(9) (a) Sabino, A. A.; Machado, A. H. L.; Correia, C. R. D.; Eberlin,
M. N. Angew. Chem., Int. Ed. 2004, 43, 2514−2518. (b) Enquist, P. A.;
Nilsson, P.; Sjoberg, P.; Larhed, M. J. Org. Chem. 2006, 71, 8779−
8786. (c) Fernandes, T. A.; Vaz, B. V.; Eberlin, M. N.; da Silva, A. J.
M.; Costa, P. R. R. J. Org. Chem. 2010, 75, 7085−7091.
(d) Skillinghaug, B.; Skold, C.; Rydfjord, J.; Svensson, F.; Behrends,
M.; Savmarker, J.; Sjoberg, P. J. R.; Larhed, M. J. Org. Chem. 2014, 79,
12018−12032.
̈
̈
(10) Vatamanu, M. J. Catal. 2015, 323, 112−120.
(11) Silva, M.; Mello, R. S.; Farrukh, M. A.; Venturini, J.; Bunton, C.
A.; Milagre, H. M. S.; Eberlin, M. N.; Fiedler, H. D.; Nome, F. J. Org.
Chem. 2009, 74, 8254−8260.
(12) Adlhart, C.; Hinderling, C.; Baumann, H.; Chen, P. J. Am. Chem.
Soc. 2000, 122, 8204−8214.
(13) Henderson, M. A.; Luo, J. W.; Oliver, A.; McIndoe, J. S.
Organometallics 2011, 30, 5471−5479.
(14) Santos, L. S.; Rosso, G. B.; Pilli, R. A.; Eberlin, M. N. J. Org.
Chem. 2007, 72, 5809−5812.
(15) Vicent, C.; Viciano, M.; Mas-Marza, E.; Sanau, M.; Peris, E.
Organometallics 2006, 25, 3713−3720.
(Rp) was 200.000 at m/z 400, where Rp was calculated as M/ΔM50%
,
that is, the m/z value divided by the peak width at 50% peak height.
Mass spectra were the result of over 10 microscans and processed via
the Xcalibur software.
(16) Milagre, C. D. F.; Milagre, H. M. S.; Santos, L. S.; Lopes, M. L.
A.; Moran, P. J. S.; Eberlin, M. N.; Rodrigues, J. A. R. J. Mass Spectrom.
2007, 42, 1287−1293.
The ESI(+)-MS/MS experiments were performed on the same
mass spectrometer operating as a Linear Ion Trap (LTQ). The
isolation width (0−2) and collision energy (0−30) were adjusted for
each experiment in order to achieve the best results. ESI(+)-MS/MS
data were processed via the Xcalibur software.
(17) Santos, L. S.; Pavam, C. H.; Almeida, W. P.; Coelho, F.; Eberlin,
M. N. Angew. Chem., Int. Ed. 2004, 43, 4330−4333.
(18) Santos, L. S.; Neto, B. A. D.; Consorti, C. S.; Pavam, C. H.;
Almeida, W. P.; Coelho, F.; Dupont, J.; Eberlin, M. N. J. Phys. Org.
Chem. 2006, 19, 731−736.
(19) Amarante, G. W.; Milagre, H. M. S.; Vaz, B. G.; Ferreira, B. R.
V.; Eberlin, M. N.; Coelho, F. J. Org. Chem. 2009, 74, 3031−3037.
(20) Rodrigues, T. S.; Silva, V. H. C.; Lalli, P. M.; de Oliveira, H. C.
B.; da Silva, W. A.; Coelho, F.; Eberlin, M. N.; Neto, B. A. D. J. Org.
Chem. 2014, 79, 5239−5248.
(21) Eberlin, M. N. Eur. Mass Spectrom. 2007, 13, 19−28.
(22) Santos, V. G.; Godoi, M. N.; Regiani, T.; Gama, F. H.; Coelho,
M. B.; de Souza, R. O.; Eberlin, M. N.; Garden, S. J. Chem. - Eur. J.
2014, 20, 12808−12816.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
ESI(+)-MS/MS and mass measurements data for the
MBH/aza-MBH reactions; NMR spectra (PDF)
1097
J. Org. Chem. 2016, 81, 1089−1098